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Abstract—Using a self consistent scheme we model the development of elastic lattice strains during uniaxial
loading for selected families of grains with specific orientations. These lattice strains vary dramatically for
the different grain orientations, and most families of grains show a high degree of non-linearity at the start
of the plastic regime. The 311 reflection does, however, respond almost linearly to loading, and therefore it
constitutes a suitable reflection for characterization of macroscopic stresses and strains by diffraction for
the given conditions. As a consequence of the high degree of non-linearity in the lattice strain response
during loading highly anisotropic intergranular residual lattice strains develop during unloading. The evalu-
ation of the model predictions by neutron diffraction is exemplified by selected results from in-situ loading
experiments performed on austenitic stainless steel specimens. As a necessary condition for the proper
understanding of the results we have included a description of the slip pattern resulting from the model
applied and its relation to the slip patterns derived from the upper-bound Taylor model and the lower-

bound Sachs model. " 71998 Acta Metallurgica Inc.

1. INTRODUCTION

The measurement of macroscopic residual stresses/
internal stresses (type-1 stresses [1]) by diffraction
methods is based on the measurement of deviations
in lattice spacing for specific crystallographic planes
(deviations from the lattice spacing in stress-free
material). In the elastic regime there is a linear re-
lation between the macroscopic stress and the devi-
ation in lattice spacing. However, due to the elastic
anisotropy in most metals, this linear relation
depends on the lattice plane, and we observe large
differences in the stress/strain levels between differ-
ent families of grains with different lattice orien-
tations (leading to intergranular stresses or type-2
stresses [1]). In the plastic regime the orientation
dependence is more complicated and the relation
between macroscopic stress and the deviation in lat-
tice spacing becomes highly non-linear.

In simple polycrystal deformation models such as
the Sachs [2]. the Taylor [3] and the Bishop- Hill
models [4-6] elastic anisotropy plays no role. The
more sophisticated self-consistent models. see [7-
10], includes the elastic anisotropy and they are
therefor attractive modeling schemes when the
focus is on the effect of elastic (and plastic) aniso-
tropy on the generation of elastic lattice strains. We
have selected Hutchinson's self-consistent model [7]
which is implemented as described in detail in [11].

In the present work we calculate the deviations in

lattice spacing or the lattice strains for a number of

lattice planes perpendicular to and parallel to the
tensile axis for uniaxially loaded aluminum, copper
and austenitic stainless steel. The results are rel-
evant for lattice strain measurements by diffraction
methods in general, but they are viewed with par-
ticular reference to neutron diffraction measure-
ments, which monitor bulk strains as opposed to
conventional X-ray measurements of the strains in
thin surface layers. As outlined above. the basic
aim of this work is to provide a rational theoretical
background for measurements of the macroscopic
stress, for type-1 stress measurements. The results
to be presented may, however, also be used for ex-
perimental evaluation of the polycrystal model by
comparison with diffraction measurements on speci-
mens subjected to macroscopically uniform tensile
stresses (during loading and after unloading). and
selected experimental resuits will be quoted.
Experimental evaluation of the numerical model is
exemplified in [12].

Kroner’s  original  self-consistent  polycrystal
model [8] (with purely elastic interaction with the
continuum matrix) leads to a slip pattern which,
after the elastic—plastic transition, 1s almost identi-
cal to the well-known slip pattern of the upper-
bound Taylor model. Hutchinson’s model (with
elastic-plastic interaction with the continuum
matrix) leads to a rather different slip pattern which
has never been described in details in open litera-
ture. This slip pattern is essential for the proper

3087



3088 CLAUSEN et al.:
understanding of the lattice strain calculation. After
the description of the present implementation of
Hutchinson’s model in Section 2 we therefore, as
Section 3. include a description of the resulting slip
pattern and its relation to the slip pattern derived
from the upper-bound Taylor model and the lower-
bound Sachs model.

In the present work we consider three f.c.c. ma-
terials: aluminum, copper and austenitic stainless
steel. They stand for different degrees of elastic ani-
sotropy, which is a parameter of great importance
in diffraction measurements of residual and internal
stresses.

2. MODEL DESCRIPTION

Hutchinson’s model is a rate-insensitive incre-
mental self-consistent model with {111}(110) slip as
the mechanism for plastic deformation. The self-
consistent scheme includes the elastic—plastic inter-
action between the grains which are regarded as
spherical inclusions in an infinite homogeneous
matrix with the overall effective polycrystal moduli.
The model is restricted to low strains as the strain
definition does not include second order terms or
instabilities such as necking.

The controlling parameters for slip are the critical
resolved shear stress and the hardening law. The in-
itial critical resolved shear stress, 7, is the same on
the 12 slip systems. The current critical resolved
shear stress for the ith slip system is denoted 7'. Its
rate of increase is assumed (Hill [13]) to be related
to the shear rates, 7, by

=Y hpj withh =hig+(1-g0") (1)
7

where 67 is Kronecker’s delta and the summation is
over all active slip systems. The factor ¢ determines
the degree of latent hardening: ¢ = 0 provides only
self hardening, ¢ = 1 provides Taylor hardening,
and ¢>1 provides stronger latent hardening than
self hardening. The instantaneous hardening coeffi-
cient, 4,, depends on the previous deformation his-
tory. In the present implementation of the model,
the relation between the accumulated slip, 7%, and
the instantaneous hardening coefficient is described

by an exponentially decreasing function
l )e"ht’ll‘r““)

2

where Ag,,; is the final hardening coefficient, 4., is
the ratio between the initial and the final hardening

h;' = hnal(1 + (ragio —
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Fig. 1. The calculated stress—strain curves for the selected
materials.

coefficient, and /i, is a parameter determining the
strength of the exponential part. This formulation
includes the simple linear hardening law by selecting
hratio = 1 which reduces equation (2) to A, = hgny).

Selection of 7y and the hardening coefficients is
not trivial. We assume that 7, is equal to one half
of the largest principal stress difference at yield,
where yield is defined as the point where the first
grain becomes plastic, a point which is, however,
difficult to determine from a stress—strain curve.

In the present calculations, 7, and the hardening
coefficients (ftgnut, Aravo and fiy,) are used as fitting
parameters to make the macroscopic stress—strain
response of the model resemble the actual macro-
scopic behavior of the materials. The calculated
macroscopic stress—strain response for the three ma-
terials is shown in Fig. 1.

The fitting parameters used in the present calcu-
lations are listed in Table 1 together with the single
crystal stiffness. Taylor hardening (g = 1) is
avoided, as it causes numerical problems in the slip
rate calculation, where the equations to be solved
are no longer independent (the well known Taylor
ambiguity problem).

The single crystal stiffness quoted for stainless
steel actually refer to a FeCrNi alloy whereas the
fitting parameters refers to tensile data for a com-
mercially available stainless steel. The compositions
are given in Table 2.

In the present calculations the initial orientation
distribution is represented by a set of 5000 grains
with random texture where the lattice orientations

Table 1. Single crystal stiffness [14, 15] fitting parameters for the three materials

€1 (GPa)  Cp3 (GPa)  Cuq (GPa) 2Cu/Cii—Ciz 1o (MPa)  ¢*  Jigyy (MPa) Hreato B
Aluminum 108.2 61.3 285 122 10.9 1.01 40.0 5.0 61.0
Copper 168.4 121.4 754 321 15.0 101 1200 17.0 200.0
Stainless steel  204.6 137.7 126.2 3.77 87.0 LO1 1400 50.0 205.0

“It should be underlined that the marginal latent hardening implied in the ¢ value of 1.01 is nothing but a mathematical trick to avoid

ambiguity.
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Table 2. Chemical composition in wt% for the stainless steel poly-
crystal as well as for the FeCrNi single crystal

F.C.C. POLYCRYSTALS

Cr Ni Mo Mn Si C

Single crystal[15] 19.0 10.0 - -
044 002

Polycrystal 1825 1342 3.66 1.48

of each grain is described by its three Fuler angles,
¢, @ and ¢, [16]. The lattice rotations during plas-
tic deformation are included even though they are
rather small for the low strains dealt with. The rela-
tively high number of grains is necessary because
the responses of selected grain sub-sets are to be
considered in the investigation of intergranular
strain differences in Section 4.

3. THE SLIP PATTERN

In the following we describe various polycrystal
deformation parameters related to the slip pattern
and their development with strain, concentrating on
parameters that relate directly to the crystallo-
graphic slip. In particular. we focus on the elastic
anisotropy and its bearing on polycrystal defor-
mation in the elastic-plastic transition range and in
the fully plastic regime.

In the present model the number of active slip
systems in the grains is determined by the stress
state in the grain. In the Taylor model, which is
based on the assumption that all grains experience
the same strain. the number of active slip systems
will normally be five so as to accommodate the five
independent strain components. In the Sachs
model, which is based on the assumption that the
stress state in all the grains is the same, only the
grains which are oriented along symmetry lines

Grians [%]

0 1 2 3 4 5

Macroscopic strain  [%]

(a) Aluminium.
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have more than one active slip system. Neither the
Taylor model nor the Sachs model consider the
elastic anisotropy of the material.

The number of active slip systems in a grain, as
calculated with the present model. varies according
to strain and grain orientation. In Fig. 2 the percen-
tages of grains with a given number of active slip
systems are shown for aluminum and copper poly-
crystals as a function of the macroscopic strain.
Initially, only one slip system is active. Then
another system follow as it appears from the large
percentage of grains with two active slip systems
after the onset of yield. After 0.5% strain approxi-
mately 50% of the grains have three active slip sys-
tems, and approximately 30% of the grains have
four active slip systems. The difference between the
two materials is quite small.

The average number of active slip systems is ~3.4
at 0.5% strain, and it increases to ~3.6 at 5%
strain, which is the highest strain considered. Thus,
the number of active slip systems is about halfway
between the single slip system in the Sachs model
and the five (or more) in the Taylor model.

The orientation dependence of the number of
active slip system in the grains of an aluminum
polycrystal is shown in Fig. 3 for plastic strain of
0.1% and 1%. At the (110} orientation the grains
have four active slip systems. at the (111} orien-
tation the grains have up to six active slip systems,
and at the {100} orientation the grains have up to
eight active slip systems. This is in agreement with
the two-. three- and four-fold symmetries in the
cubic lattice. As for the numbers of active slip sys-
tems. the orientation distribution of the number of
active slip systems are found to be essentially identi-

N
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(b) Copper.

Fig. 2. The number of active slip systems as a function of plastic strain.
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Fig. 3. The number of active slip systems in aluminum as a function of orientation at ¢’ =0.1% and at
P.—_10
e =1%.

cal for aluminum and copper at the plastic strain
levels of considered (apart from the very early stage
of plasticity, to be described later).

The m-factor (often referred to as the Taylor fac-
tor) reflects the total slip activity in the individual
grains. It is equal to Z7/&" (¢F being the plastic
strain rate in the grain). The average mi-factor starts
at two at the onset of plastic deformation, and it
then increases to an approximately stable value of
~2.6 — about halfway between the values of 2.23
and 3.06 for the Sachs and Taylor models, respect-
ively.

The orientation dependence of the m-factor at
0.5% plastic strain in an aluminum polycrystal is
shown in the inverse pole figure in Fig. 4(a). The
orientation dependence for copper is practically
identical to that in Fig. 4(a). For comparison the
orientation distribution of the m-factor for the
Taylor and the Sachs models is shown in Fig. 4(b),

<111>

(a) Aluminium.

(b) Tavlor model.

(c). The results for the present model are clearly
closest to the Sachs model. This is particularly clear
for orientations close to (110}, In the Sachs model
only the four “ideally oriented™ slip systems (with
identical m-factor of 2.45) are activated. In the
Taylor model an additional. “non-ideally oriented™,
slip system must be activated, which brings the m-
factor up to 3.67. Obviously only the ideally
oriented slip systems are activated in the present
model.

Thus, independent of elastic anisotropy and
strength parameters, the model leads to one ‘“uni-
versal” slip pattern about halfway between the slip
patterns of the Sachs and Taylor models. One
should notice that this universal slip pattern only
refers to texture-free f.c.c. materials (or approxi-
mately texture-free since the model includes the for-
mation of a weak fiber texture). The slip pattern
derived from the model does depend on the texture

<111> <111>

<110>

<100>

<110>

{¢) Sachs model.

Fig. 4. The m-factor as a function of orientation.
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(b) Copper.

Fig. 5. The number of active slip systems as a function of orientation in aluminum and copper at
P
& =0.011%.

(not only the average m-factor as in the simpler
Sachs and Taylor models, but the whole slip pat-
tern) because the properties of the continuum
matrix depends on the texture.

At the very early stage of plastic deformation
there is, as one would expect, a clear effect of aniso-
tropy as demonstrated in Fig. 5. which shows the
orientation dependence of the number of active slip
systems for aluminum and copper at 0.011% plastic
strain. In aluminum, without pronounced elastic
anisotropy and hence without pronounced stress
repartition in the elastic regime, slip has started in
the regions next to (100) and (110) with the same
high Schmid factor and not next to (111) with a
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low Schmid factor. In copper, with its rather high
elastic anisotropy, there is stress repartition in the
elastic regime: load is transferred from the region
next to (100) to the region next to (111) (e.g.
Figure 6(b)). The result is that slip has started next
to (111) and (110}, whereas slip has not started
next to (100) -— with a Schmid factor much higher
than that for (111} and equal to that for {(110).
Evidently, the subsequent slip processes soon
remove this initial effect of elastic anisotropy.

A more comprehensive description of the slip pat-
tern, including the deformation-induced changes in
lattice orientations, is presented in [17].

<111>
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(b) Copper.

Fig. 6. The normalized effective Young’s modulus as a function of crystallographic orientation.
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4. LATTICE STRAIN CALCULATIONS

The lattice strains are derived from the model cal-
culations described above: tensile deformation of in-
itially texture-free “‘samples’” of aluminum, copper
and stainless steel with 5000 grains. The input par-
ameters for the three materials (aluminum, copper
and austenitic stainless steel) were presented in
Table 1, and Fig. 1 showed the uniaxial stress—
strain curves. In a typical neutron diffraction exper-
iment grains within +0.5° from the scattering vector
contribute to the registered intensity. However, in
order to improve upon the statistical quality of the
data we here average over +5" in our presentation
of numerical results. We assume that this increased
tolerance does not have any major effect on the
results other than to improve the statistical quality.

The lattice strains have been calculated for all
crystallographic planes with Miller indices up to
{531}, which is the unsymmetrical f.c.c. reflection
with the lowest indices (we ignore lattice planes cor-
responding to forbidden reflections in the f.c.c. lat-
tice, higher-order lattice reflections and reflections
composed of two families of lattice planes). We
only quote results for the lattice planes listed in
Table 3 (in order to limit the number we have
excluded the 420- and 422 reflections). Table 3 also
gives the crystallographic multiplicities of the lattice
planes, which is a factor of practical importance,
since the intensity of a specific #k{ reflection in a
powder diffraction experiment is proportional to
the multiplicity. The lattice strains in the different
families of grains (the different reflections) in the re-
spective directions are calculated from the stress
tensor, provided by the polycrystal model, and the
single crystal compliance tensor.

5. LATTICE STRAIN RESULTS

The results of the calculations are presented in
five subsections: Section 5.1, the elastic Kroner stiff-
ness of the reflections; Section 5.2, the elastic lattice
strains vs the applied load; Sections 5.3 and 5.4, the
standard deviation and the deviation from linearity
in Section 5.2; Section 5.5, the residual lattice strain
after unloading from different strains. For Sections
5.4 and 5.5 the results are presented in the conven-
tional way with the independent variable (the plas-
tic strain) along the x-axis and the results along the
v-axis. For Sections 5.2 and 5.3 the results are pre-
sented differently — with the independent variable
(the applied stress) along the y-axis and the results
(the elastic lattice strain and their standard devi-
ations) along the x-axis -— in order to approach the
presentation in a conventional stress-strain curve.

Table 3. The reflections considered their multiplicities

hkl 111 200 220 311 331 531
Multiplicity 8 6 12 24 24 48

F.C.C. POLYCRYSTALS

The results are evaluated in terms of the advan-
tages associated with hk/ reflections showing a lin-
ear relation between the measured lattice strains
and the actual state of macroscopic stress. In this
connection it is relevant to remember the difference
in elastic anisotropy of the three materials dealt
with as expressed by 2C4/(C,—C12); for aluminum
it is 1.22, for copper it is 3.21, and for austenitic
steel it is 3.77 (for details see Table 1).

5.1. Diffraction elastic constants

There are great differences in the degree of elastic
anisotropy in the materials dealt with in the present
work, and this has a direct impact on the lattice
strain levels observed in different orientations. At
the grain size scale we have illustrated the orien-
tation dependence of the elastic modulus for alumi-
num and copper in Fig. 6. The figure shows the
normalized modulus with respect to the maximum
value, which is found at the (l11) orientation in
cubic materials.

The trend in the orientation dependency of the
modulus is identical for all f.c.c. materials, however,
the numerical levels are dictated by the degree of
elastic anisotropy. The variation in copper is much
more pronounced than in aluminum, as shown in
Fig. 6. where it is noticed that the minimum values
are 0.86 and 0.41 for aluminum and copper, re-
spectively.

Figure 6 dealt with the stiffness on a grain size
scale. however. for practical utilization of neutron
diffraction for stress/strain characterization we uti-
lize the so-called diffraction elastic constants
(DEC). In the present model these constants are
determined as the average Kréner stiffness [18], and
Table 4 shows the numerical values for the reflec-
tions considered here. Relative to the single crystal
stiffness we observed the general trend that the
reflections which are much stiffer (e.g. (111}) or
much more compliant (e.g. (200)) than the macro-
scopic modulus are calculated to be less extreme.

5.2. Lattice strain development

Figures 7 and 8 show the relation between the
applied stress and the elastic lattice strains parallel
to and perpendicular to the tensile axis for the six
reflections in the three materials. The lattice strain
for a given reflection is determined by the stress
state in the corresponding grains. Load redistribu-
tion between the grains therefore leads to changes
in the lattice strains.

Table 4. The diffraction elastic constants ol specific reflections (in

GPa)
En Eng Eang Esy Es Es3
Aluminum 733 67.8 71.8 70.2 72.3 71.2
Copper 158.0 101.5 138.7 121.8 1438 1312
Stainless steel 2462 1498 2120 1832 2209 1992
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Fig. 7. Stress—strain response parallel to the tensile axis, here given for six reflections.

As seen in Fig. 7. the degree of redistribution of
the load between the reflections (between the differ-
ently oriented grains) at the onset of plastic defor-
mation increases as the elastic anisotropy increases,
aluminum having the weakest elastic anisotropy
and stainless steel the strongest. One should note
the scale difference in the figures. This redistribution
of the load is obviously determined by a combi-
nation of the elastic and the plastic anisotropy of
the material.

The strain redistribution is quite similar in stain-
less steel and copper. Parallel to the tensile axis,
Fig. 7, the two elastically softest reflections, 200
and 311, remain the softest in the plastic region,
and the 331 and 220 reflections become the stiffest.
Perpendicular to the tensile axis. Fig. 8, the 200
reflection experiences the largest redistribution in
lattice strain and becomes the stiffest direction.

In aluminum, the strain redistribution is different
from that in the other two materials. Parallel to the
tensile axis the elastically stiffest reflection, 111, ex-
periences the highest strain in the plastic region for
a given applied load as it becomes the softest reflec-
tion in the plastic region, and the elastically softest
reflection, 200. becomes one of the stiffest in the

plastic region. Perpendicular to the tensile axis. the
redistribution is almost the same as the 111 reflec-
tion becomes the softest reflection in the plastic
region and the 200 reflection becomes the stiflest.
The differences in lattice strain in aluminum are
rather small compared with the strain resolution in
a neutron diffraction measurement (+50 x 107%),
which would make them difficult to observe exper-
imentally.

The redistribution of the lattice strains perpen-
dicular to the tensile axis at the onset of plastic de-
formation is particularly dramatic for the 200
reflection. The lattice strain may even decrease with
increasing applied stress. In order to understand
this one must realize that the sub-set of grains with
{200} perpendicular to the tensile axis (or for that
matter any sub-set of grains with (hk/{) perpendicu-
lar to the tensile axis) is composed of sub-sub-sets
of grains with different orientations relative to the
tensile axis. The sub-sub-sets actually have the ten-
sile axis distributed along the {100} (110} side of
the unit triangle. A close investigation of the grains
in these sub-sub-sets (with the exception of those
close to (100)) in terms of the numbers of active
slip systems and the m-factors as quoted in Section
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Fig. 8. Stress—strain response perpendicular to the tensile axis, here given for six reflections.
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Table 5. Normalized stress parallel to the tensile axis for the differ-
ent reflections

hil Aluminum  Copper Steel Taylor Sachs
111 1.20 1.21 1.18 1.20 1.35
200 0.88 0.88 0.87 0.80 0.99
220 1.10 1.11 1.13 1.20 0.96
311 0.97 0.97 0.97 0.94 0.97
331 1.07 1.07 1.07 1.13 0.99
531 0.99 0.99 1.00 1.03 0.90

3 shows that their plastic contraction (perpendicular
to the tensile axis) is much larger in the (100} direc-
tion than in the direction perpendicular to (100}
(we are not giving the details, but it is relatively
easy for the interested reader to check it). This
means that the plastic contraction in the (100}
direction is much larger than the contraction in the
continuum matrix, which will introduce a tensile
stress in the (100) direction counteracting the
Poison contraction and thereby introduce the dra-
matic change in the development of the lattice
strain for the 200 reflection at the onset of plastic
deformation. “Curling” is a well known experimen-
tal manifestation of the special behavior in the
direction perpendicular to the tensile (or com-
pression) axis in grains subjected to tension or com-
pression in the (110} direction, e.g. {19].

As pointed out, Figs 7 and 8 reveal rather big
differences between the three materials. And it is
clear that the differences in elastic anisotropy, elas-
tic constants and strength must be reflected in the
results. In Table 5 we go behind these “‘trivial” (but
of course very relevant) differences. The table gives
the (average) normal stresses in the tensile direction
divided by the applied stress for the different grain
orientations in the three materials at specific applied
stresses (all corresponding to 5% strain). These nor-
malized stresses reflect the underlying polycrystal
deformation pattern. They are almost identical in
the three materials which agrees with the findings in
Section 3, that the deformation pattern is basically
the same in aluminum and copper. For comparison

F.C.C. POLYCRYSTALS

the table also gives the normalized stresses for the
Taylor and the Sachs model, calculated as the m-
factor in the specific directions divided by the aver-
age m-factor. Again there is perfect agreement with
the findings in Section 3: the deformation pattern
derived from the self-consistent model is approxi-
mately half-way between those derived from the
Taylor and the Sachs models.

3.3. Lattice strain variations

When we focus on specific sub-sets of grains hav-
ing a specific lattice plane normal in a direction par-
alle] to the tensile axis, all grains in this family will
show nearly the same elastic lattice strain since the
deformation is rotationally symmetric. When we
focus on specific sub-sets of grains having a specific
lattice plane normal in a direction perpendicular to
the tensile axis, the elastic lattice strain will show
great variations: a rotation around an axis perpen-
dicular to the tensile axis changes the orientation
relative to the tensile axis, and thereby the stress
and strain state in the grains (e.g. Section 5.2).
Figures 9 and 10 present the standard deviation of
the elastic lattice strains within the different grain
sub-sets.

Parallel to the tensile axis, the standard deviation
is less than [0% of the measured lattice strains, see
Figs 7 and 9. Perpendicular to the tensile axis, the
standard deviations are much larger. For the 200
reflection in the plastic region the standard devi-
ation is even larger than the average elastic lattice
strain, see Figs 8 and 10. This particularly large
standard deviation for the 200 reflection perpen-
dicular to the tensile axis is due to the special beha-
vior of the grain sub-sub-sets involved as described
in Section 5.2.

5.4. Deviation from linearity

In Section 5.2 we observed a high degree of non-
linearity in the lattice strain response, and we
observed great differences between the longitudinal
and the transverse lattice strain response. In view of
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the importance of linearity as a criterion for the
selection of the most suitable retlection(s) we have
extracted the deviation from linearity in the plastic
region parallel to and perpendicular to the tensile
axis from Figs 7 and 8 (defined as the, positive or
negative, deviation along the lattice—strain axis
from the extrapolated elastic line for the reflection
in question). In Figs 11 and 12 the results are
plotted vs plastic strain (obtained from the applied
stresses in Figs 7 and 8 via the stress-strain curves
in Fig. 1).

Parallel to the tensile axis the aluminum results
are quite different from the copper and the stain-
less-steel results (which are quite similar). The 200
reflection, for instance, has a negative deviation in
aluminum and a positive deviation in copper and
stainless steel. The magnitude of the deviations rela-
tive to the actual lattice strains is also clearly smal-
ler in aluminum than in the other two materals.
This demonstrates the dominant effect of elastic
anisotropy. Perpendicular to the tensile axis the
aluminum results are not very different from the
results for the other two materials, neither in sign
nor in relative magnitude.

5.5. Residual lattice strains

In Sections 5.2, 5.3 and 5.4 we have presented the
lattice strain response for the different Ak/ reflec-
tions under tensile loading, starting at zero for no
load. However, after loading into the plastic regime
one may return to a situation with zero macro-
scopic stress, but now not necessarily with zero lat-
tice strains — because of the non-linear behavior of
the lattice strains in the plastic regime. It is
obviously important to know the different lattice
strains after unloading, the residual lattice strains.
Therefore. we have made calculations with loading
to various plastic strains followed by unloading.

[t turns out that the results are practically identi-
cal to the results in Figs 11 and 12 for the deviation
from linearity (but now the x-axis gives the plastic
strains at which unloading takes place, and the y-
axis gives the residual lattice strains). The reason
why the residual lattice strains are practically identi-
cal to the deviations from linearity is that there is
no slip during unloading. This is not as trivial as it
may seem; using a Krdner-type [8] self-consistent
model Leffers and Pedersen [20] did observe slip
during unloading (with a significant effect on the re-
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sidual stresses and the residual lattice strains).
Without slip during unloading there is only one
reason for a (small) difference between the residual
lattice strains and the deviations from linearity, viz.
the development of a weak texture during plastic
straining: the deviations are obtained by extrapolat-
ing the elastic responses in a texture-free material
whereas the residual strains are obtained by elastic
unloading of a material with a weak texture.

6. DISCUSSION

The present investigation s not the first time self-
consistent modelling (or other polycrystal model-
ling) has been used in connection with diffraction
measurements of internal stresses. With reference to
neutron diffraction we may quote MacEwen et
al. [21], Leffers and Lorentzen [22] and Tomé et
al. [23]; with reference to X-ray diffraction we may
quote Krier er al. [24]. However. the present work
specifically addresses the effect of elastic anisotropy
and includes a systematic theoretical investigation
of the interplay between type-1 and type-2 stresses
and its bearings on the practical utilization of the
neutron diffraction technique for stress/strain
characterization.

For the texture-free (or almost texture-free) ma-
terials  investigated in  the present  work,
Hutchinson’s self-consistent model leads to a “"uni-
versal” deformation pattern. independent of elastic
anisotropy and strength parameters (apart from the
very early stage of plastic deformation). We do not
believe that the specific selection of Hutchinson's
model is very important. Any self-consistent model
with soft interaction with the continuum matrix,
e.g. the models of Molinari er «/. [9] and Lebensohn
and Tomé [10], would probably lead to very much
the same results. However, when the deformation
pattern is translated into lattice strains, elastic ani-
sotropy and strength parameters play decisive roles.
We are convinced that such self-consistent models
are better than simpler models like the Sachs and

the Taylor models. There is no physical reason why
the individual grains should interact with a conti-
nuum matrix with properties which are different
from those of the average grain (the Taylor model
correspond to an infinitely strong matrix and the
Sachs model correspond to a very weak matrix).
The only obvious shortcoming of the self-consistent
model is that it is a l-site model [9], i.e. that the in-
dividual grain interacts with a continuum matrix
and not with specific neighboring grains.

The results of the numerical simulations are to be
checked experimentally in subsequent publications
(we do quote results from one of these). However.
we do here draw a number of conclusions already
on the basis on the model calculations.

6.1. hkl selection for stressistrain characterization

The ideal reflection will have a linear response
parallel to and perpendicular to the tensile axis and
hence zero residual lattice strain after unloading.
The 311 reflection comes quite close to this ideal
for all three materials. In the range up to 5% plas-
tic strain the deviation from linearity of the 311
reflection is well within the normal standard devi-
ation in a neutron diffraction experiment which is
about +50 x 107°. The 311 reflection has the further
advantage that it is rather insensitive 10 the model
selected: as shown in Table 5 we obtain approxi-
mately the same resuit for the present model. the
upper-bound Taylor model and the (realistic) lower-
bound Sachs model [25]. Because of the approxi-
mately linear response one may for the 311 reflec-
tion simply extrapolate the Krdner diffraction
elastic constants into the plastic regime.

One frequently sees references to a rule of thumb
that one just has to use a high-index (or low-sym-
metry) reflection. The present results do not support
this rule of thumb: the 331 reflection with the same
symmetry as the 311 reflection and the 331 reflec-
tion with a lower symmetry shows a greater devi-
ation {rom linearity than the 311 reflection.
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The selection of non-linear reflections which do
have a strong recollection of the plastic deformation
history and hence carries extensive levels of residual
intergranular stresses, would make appropriate in-
terpretation of diffraction results complicated. Take
for instance the results for stainless steel samples
which have been unloaded after 1% plastic strain.
Parallel to the tensile axis the 200 reflection shows
a residual tensile lattice strain of ~650x 10
(Fig. 11(c)). In case this reflection is selected us our
probe for macroscopic internal stresses and the lat-
tice strain was converted to stress following our
findings for the relation between the macroscopic
stress and the deviation in lattice spacing (see
Fig. 7(c)) this would give a stress of ~90 MPa in
contradiction with the obvious macroscopic stress
level of zero in the unloaded specimen.

6.2. Other conditions

It should be underlined that all the calculations
refer to tensile deformation of texture-free ma-
terials. and hence the specific results are only rel-
evant for these conditions (the results would of
course also apply to compression of texture-free
materials after a change of sign). For other defor-
mation modes and for textured materials new calcu-
lations should be made. It is obvious. for instance.
that for tensile deformation of a materiul with a
very strong (111} fiber texture the 111 reflection
(and not the 311 reflection) will have a linear re-
sponse parallel to the tensile axis.

6.3. Experimental evaluation of model predictions

The aim of the present work is (o present the
results of the model calculations. However. in order
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to establish a certain experimental basis, we shall
present some preliminary results from an exper-
imental investigation where lattice strains parallel to
the tensile axis for the different reflections have
been measured by neutron diffraction during in-situ
tensile loading of stainless steel specimens. The
measured lattice strains are shown in Fig. 13
together with the theoretical stress/lattice--strain
curves. The theoretical curves deviate somewhat
from those in Fig. 7(c) because they refer to the
actual specimens with some initial texture.

The basic difference between the theoretical
curves for the different reflections is reproduced
very well by the experimental data throughout the
deformation range considered here. A detailed dis-
cussion and comparison between model prediction
and diffruction results is to appear in a subsequent
publication by Clausen et «l. [26]. However, we do
wanl to muke two statements:

(1) The 311 reflection shows an approximately lin-
ear response even though it is not as perfectly linear
as in Fig. 7(c).

(t1) The experiments reproduce the theoretical re-
lation between the 111 and 220 reflections. This
refers to the largest deviation of the self-consistent
deformation pattern from that of the Taylor model
as shown in Fig. 4. It is obviously correct that the
m-factor in the vicinity of (110} 1s much smaller
than that in the vicinity of {111) as predicted by the
self-consistent model. Identical m-factors for (110)
and {111}, as predicted by the Taylor model, would
lead to a much larger difference between the 111
and 220 reflections in Fig. 13 (corresponding to the
large difference in effective Young's modulus), e.g.
Table 4.
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Fig. 13. Calculated (lines) and measured (symbols) stress—strain response paralle] to the tensile axis for
stainless steel.
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7. CONCLUSION

We have presented numerical results from a self-
consistent modelling scheme for polycrystal defor-
mation with specific emphasis on the elastic and
plastic anisotropy. The data presented are relevant
to both scientific and engineering utilization of neu-
tron diffraction techniques for the characterization
of residual stresses. Through calculations for three
different f.c.c. materials exhibiting different degrees
of elastic anisotropy we have quantified the hk/
dependence of the lattice strain response to uniaxial
loading. For aluminum the variations are in the
observable range even though the numerical scale is
small with the largest difference, observed between
the 111 and the 200 reflection. not exceeding
~2x 107 at the maximum load considered
(55 MPa). For the highly anisotropic (and stronger)
stainless steel the numerical scale is much larger
with the largest difference. observed between the
200 and the 331 reflections, amounting to
~1750 x 10™® at the maximum load considered
(350 MPa). The numerical results show a high
degree of non-linearity in the plastic regime, produ-
cing residual intergranular strains upon unloading.
Certain hk! reflections, however, continue to show
an approximately linear lattice strain response far
into the plastic regime and unload linearly to a
state of zero residual intergranular strain. Such hk/
reflections have little recollection of the plastic de-
formation history, and they would be the best
choice for a specific hk/ reflection to serve as the in-
ternal probe for macroscopic residual stresses and
strains. In texture-free materials the 311 reflection is
particularly well suited for this purpose, while other
reflections with an identical or lower symmetry. like
the 331 or the 331 reflection, respectively, are less
perfect.
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