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I. Introduction

Apertures are used in imaging when a suitable refracting element cannot be

found.  This is certainly the situation in the cases of energetic X rays and

neutrons. Aperture imaging involves the formation of an image on a detector by

those particles or rays going through a hole in a material body. The body itself is

often referred to as a “pinhole” or “aperture”, but is more correctly called an

occluder – the aperture is the hole in the body.

The radius of the aperture used places the problem between two limits:

pinhole1 and penumbral2,3 imaging. The pinhole limit obtains when the

relationship between aperture radius, detector element size, and the object and

image distances is such that a single object point produces an image that is

smaller than a detector element, or pixel. (It should be noted that, strictly

speaking, the pinhole limit is unattainable when the radiation can penetrate or
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scatter within the occluder.) In this case, there is a one-to-one relationship

between object (source) and image points, and the image faithfully reproduces

the object in two dimensions with no signal processing. The penumbral regime

uses an aperture big enough that a point in the center of the detector has a clear

path to every point in the entire object. Because every image point receives

signal from many object points, the image must be mathematically inverted

(unfolded) to give a reconstruction of the source.

Pinhole imaging is advantageous because it is accurate and has high

resolution, but a pinhole transmits relatively little signal. Penumbral imaging has

good signal level, but unavoidably magnifies statistical noise in the required

reconstruction process. The optimal procedure to extract the maximum amount of

information possible from a limited amount of signal must lie between these two

extremes.

The principles of pinhole imaging were understood in the late 16th century.4

In this paper, we explore the issues that contribute to the resolution of an

occlusive imaging system when there is a high level of noise on the signal, or

when the particles of interest can penetrate through the occluder. We have

developed an algorithm for image inversion based on direct calculation of

probability distribution integrated over the areas of square detector pixels. For

the case of neutron imaging, penetration of and scattering within the occluder are

explicitly calculated. Two approximations are made: discretization of the source

and neglect of multiple scattering in the occluder. These assumptions will be

justified later. Because the problem is formulated in terms of matrices, the

influence of geometric parameters on system performance can easily be explored

using the concept of matrix conditioning5. A noise reduction algorithm has been

developed using the process of singular value decomposition6 and constrained

optimization. With these techniques in hand, we are in a position to find the
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optimal geometry to maximize information-gathering ability for any given total

signal input. It is shown that the amount of information one can retrieve can be

greatly increased by doing mathematical reconstructions of the source object.

These techniques are widely applicable. Herein, they are illustrated with

reference to imaging of laser-induced implosions of inertial confinement fusion

(ICF) targets.7 Such implosions can give off X rays and fusion product neutrons,

in amounts that make statistical noise the dominant factor in imaging resolution.

Our source objects are small (~50 mm radius), but the techniques we develop are

applicable to any scale.

In Section II, the geometry of the problem is presented and the free

parameters defined. Section III explains how the problem is formulated in terms of

matrices, defines condition number, and gives an illustration of its importance.

We also give an intuitive explanation of how each free parameter affects the

condition number. Section IV explains the noise reduction process. In Section V,

we present the results of a scan of the free parameters in the problem to find the

optimum geometry. An example reconstruction is given for a yield achievable in

current experiments. Section VI addresses the topic of error bars on the

reconstructions. The related subject of system resolution is treated. The

summary (Section VII) deals with practical considerations of how these

techniques are applied to an experimental situation.

II. Geometry

For the examples to be presented, the following geometry is used (Figure

1): ro is the radius of the field of view in the object plane. The source is projected

onto the object plane, at a distance lo from the aperture, which has radius ra. The

detector (image plane) is at a distance of li from the aperture. w is the width of a

pixel and n is the number of pixels across needed to contain the image. (Because

of penetration, neutron images will not have a sharp cut-off. The radius ri of the
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image is taken as ro times the magnification, li/lo. The actual physical detector

used to capture this image would of course be bigger.) The pixels in question

might be the physical elements of a scintillator neutron detector1, or the pores of

a microchannel plate of an X-ray detector8. It might be desirable for a given

problem to group together several physical detector elements as one pixel of the

image analysis.

Figure 1 shows a thick occluder appropriate to neutron imaging. It is made of

some dense material such as gold, so as to attenuate the flux of particles not

going through the aperture. Because low-energy X rays are less penetrating, a

simple hole in a thin plate is adequate.

The diagram is not drawn to scale; a realistic geometry might have an

aperture radius less than 10 mm, a detector radius of a few centimeters and a

detector distance of several meters. The occluder probably would not extend all

the way to the detector for practical reasons. Beyond the first few mean free

paths, the extra material does not afford much additional attenuation.

The occluder shown is not top-to-bottom symmetric. The shape chosen

presents the same clear aperture to every source point. The two inner cone

angles are such that every ray beginning on a point in the object plane within a

radius of ro and ending on a point in the image plane within a radius of ri is

unobstructed. All other rays are cut off by as much metal as possible. The cone

defining the outer surface is determined by the circles of radius ro and ri in the

object and image planes respectively. If the occluder were allowed to extend

outside this cone, neutrons that would have hit the image plane outside a radius

of ri if they were undeflected might scatter into the detector. Previous designs

have tried to maximize a quality called isoplanarity9, which means that the image

would be the same for all source points, regardless of their position in the object
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plane. This is not of concern to us because we are doing exact calculations, and

do not use this approximation.

If ro is defined by the problem (about 50 mm for an ICF capsule), the free para-

meters are lo, ra, and n. li is dependent: li = lo nw / 2ro. w is a free parameter in the

code developed in this paper, but in what follows, w is set at 1 mm, because this

is typical for scintillator neutron detectors. Section IV introduces a fourth free

parameter: the number of eigenvectors used in the decomposition of the matrix.

III. Matrix representation

Any discrete linear transformation can be written in matrix form. An

apparently different method will be reducible to matrix form as long as it’s linear.

We write this explicitly: Mo = i, where o is the object and i is the image. Since o

and i are both two-dimensional, M should be four dimensional, but if we

concatenate the rows of o and i to form column vectors, M will be two

dimensional, with each column representing the image produced by one source

point. M is an N ¥ N array, where N < p (n / 2)2. Equality does not hold because

the pixels at the edge, which are only partially illuminated, are omitted. The

source is modeled as the sum of N delta functions, situated at the points that are

the reflections through the center of the aperture of the centers of the detector

pixels. N independent pieces of information are the most we can hope to ask for

under ideal circumstances. Discretization is justified when we are not asking for a

level of detail in the inversions finer than the extent of several pixels. We shall

see later what happens when this is violated.

M is split up into three contributions: M = M1 + M2 + M3. M1 comprises

particles (neutrons or photons) that pass through the aperture and never hit the

occluder. M2 accounts for particles penetrating through the occluder along

straight-line paths. This flux is attenuated by the amount of metal between any

pair of object and image points. M3 includes particles that are scattered once in
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the occluder but still hit the detector. Multiple scattering is neglected. (This is

justified below.)

M1jk is the direct contribution to the pixel centered at (xj, yj, -li) from the

source point at (xk¢, yk¢, lo). It is the quantity
 

  

† 

dxdy(l o + l i )
4p x - ¢ x ( )2 + (y - ¢ y )2 + (l o + l i )

2[ ]
3 2

integrated over the area of the square pixel.

  

† 

dx dy
4p (x - ¢ x )2 + (y - ¢ y )2 + (l o + l i )

2[ ]
is the fraction of solid angle subtended, and

  

† 

l o + l i

x - ¢ x ( )2 + y - ¢ y ( )2 + (l o + l i)
2[ ]

1 2

 is the cosine of the angle to the normal. The projection of the aperture onto the

image plane is round, so for some pixels, the integration is only up to the edge of

this shadow.

M2jk has the same integrand, but multiplied by exp(-djk/l), where djk is the

distance a particle must travel through metal to get from (xk¢, yk¢, lo) to (xj, yj, -li).

l is the mean free path for neutrons in the metal: l = 1 / stot n, where stot is the

total cross section for scattering, and n is the number density. The material used

in the examples in this paper is gold. All nuclear data come from the Brookhaven

ENDF/B-VI  300 K library10. M2 is zero for the pixels lying in the unshadowed

area. For pixels straddling the shadow edge, the integration is over the

complements of the pieces included in M1.

The matrix M3 accounts for scattering in the occluder. Various processes can

contribute to scattering; however in this case, three are dominant. The cross

section for elastic scattering of 14.1 MeV neutrons by gold is s = 2.64 barns. The

(n, 2n) reaction has s = 2.13 barns, and Q = -8.06 MeV. The (n, n¢) continuum
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contribution is s = .468, with Q = -.0995 MeV. Together these three account for

99% of the total cross section of 5.31 barns.

The calculation of elastic scattering is described first.

Neutrons are emitted isotropically into 4p steradians from a source point (xk¢,

yk¢, lo). For some emission angles q and f, the undeflected ray will pass through

the metal. From entrance point to exit point of the undeflected ray, a particle

emitted at these angles has a probability of scattering at any intermediate point

proportional to exp(-din / lin), where din is the distance from entrance point to

scattering point, and lin is the mean free path for 14.1 MeV neutrons. This is

because the flux has been attenuated by this factor. The particles have not

simply disappeared; they have been scattered out of this path. The majority do

not hit the detector. Those that do are included in M3. The probability that a

neutron scattered at the point of interest hits the detector is proportional to the

differential scattering cross section for the angle defined by the initial path and

the ray from the scattering point to the image point (xj, yj, -li). The neutron must

still exit the metal, so its probability is multiplied by exp(-dout / lout), where dout is

the distance through the metal from scattering point to exit point, and lout is the

mean free path for the neutron at the lower energy produced by scattering. For

realistic geometry, an elastically scattered neutron that hits the detector must

have been deflected at a very shallow angle. Shallow angle scattering of a

neutron off gold doesn’t change the energy appreciably, so lout = lin to high

precision. Again, the flux is attenuated on the way out because particles are

scattered out of the path. Most do not hit the detector. Those that do have been

multiply scattered and are neglected in this calculation. The probability for each

pair of object and image points is now integrated over emission angles q and f,

path distance din, and the area of the pixel in the image plane.
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The (n, 2n) reaction produces a smaller detected response than an elastic

reaction with the same scattering cross section for two reasons, both having to

do with the net loss of 8 MeV, and the division of the remaining 6 MeV between

the two neutrons. The first effect is a decrease of the mean free path. Between 6

keV and 6 MeV, the total cross section is higher than it is for 14 MeV neutrons,

so the flux is attenuated more as it exits the metal. The second effect comes about

because the response of the scintillator scales roughly as the three-halves power

of energy.11 Thus a neutron of a given energy produces a bigger signal than two

neutrons whose energies sum to the original amount. The (n, n¢) continuum

interaction also involves a loss of energy to the scattered neutron.

M3 is calculated by summing together the three differential cross sections at

each angle, but neglecting the decrease of energy of the inelastically scattered

particles. This produces an overestimate of the total effect of scattering. Even so,

it is found that for realistic occluder dimensions (nw << li), M3 is small (<1% of

M1). This justifies the neglect of multiple scattering. Because M3 takes a long

time to calculate, it is often omitted in the examples that follow. For a given

experimental situation, it should probably still be calculated in order to make sure

it’s negligible for that specific geometry.

For low energy X rays, only M1 is calculated. For higher energy X rays, the

issue of penetration might have to be addressed.

Figure 2 a, b, and c show the components of M1, M2, and M3 produced by a

single source point for n = 30, lo = 3 cm, and ra = 6 microns. M3 has been rescaled

by 3.5 ¥ 103 to be more visible. Figure 2d shows the component of M = M1 + M2

+ M3. These form one column of the matrices (response to one source point).

They are turned from column vectors back into square arrays, so what is seen is

the probability distribution produced in the image plane by one source point.

Notice that M3 is centered about the axis of the occluder, not the center of the
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direct image (M1). The white circle shows the edge of the shadow of the

aperture, projected onto the image plane. Also shown at the bottom of Figure 2 is

the normalized color scale used in all diagrams in this paper. The normalization

used when displaying M is approximately equal to the fraction of solid angle

subtended by one pixel, or w2 / 4p (lo + li)
2. This is of the order of 10-10 to 10-8.

When o is displayed, the scale is appropriate to the particle yield. The

normalization for i is roughly equal to the product of the two.

Figure 3 shows all the columns of M. The response to one source point, such

as that shown in Figure 2d, is made into a column vector by placing the rows

end-to-end. (Only those pixels lying completely within a radius of ri are included.

This causes a variation in the width of the bands.) The column of Figure 2d is

shown on the right, and the arrow indicates its place in the matrix.

        If detector imperfections are known, the point spread functions can be put

into a separate matrix that left-multiplies M. This would give the expected signals

after detection.

The calculations have been done for deuterium-tritium fusion neutrons only.

Deuterium-deuterium fusion produces a lower energy neutron with a shorter

mean free path, which would give a narrower point spread function. However,

DD experiments have not so far produced a yield high enough to image.

       We now turn to the question of how we should choose the dimensions of

the problem. We shall see that there are some good choices and some poor ones.

The two factors that determine the amount of information that can reliably be

extracted from the data are matrix conditioning and particle throughput. It must

be stressed that the concept of conditioning is herein stated in terms of linear

algebra, but the concept is perfectly general. For example, it is not difficult to

show that analysis by Fourier decomposition is easily rewritten in terms of

matrices. Using matrices directly makes the concepts more easily apparent.
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The fundamental problem arises from the overlapping in the responses from

neighboring source points that comes about when the aperture is enlarged to

increase particle throughput. No matter the formalism of the unfold process, one

way or another, subtraction must be performed to separate the responses of the

individual points. With matrices, this takes the form of Gaussian elimination. Any

subtraction that is done is deleterious, because the entries subtract, but the

noise adds in quadrature! A small amount of noise on the image can be greatly

magnified in the reconstruction, producing meaningless results. An example is

shown in Figure 4 for two different choices for the dimensions in the problem.

The first represents an extreme example of penumbral imaging (n = 40, w = .5 mm,

ra = 1000 mm, ro = 3.8 cm, lo = 1 cm). The test object is shown in panel a). This is

an unrealistic shape for an ICF capsule, but the sharp edges are a stringent test

of the unfolding. Panel b) shows the image produced by converting the object to

a column vector, multiplying by M, and converting back to a square array. Panel

c) is the reconstruction produced from o = M-1i. It’s not exactly like the object

because of discretization. Panel d) shows the image with a small amount of noise

added, and e) shows the reconstruction. A small amount of noise has been

magnified by the poorly conditioned matrix to give useless results. Parts f) and g)

show a reconstruction for the pinhole case (n = 40, w = 1 mm, ra = 1.5 mm, lo = 1

cm, ro = 100 mm. The aperture is smaller and lo / ro is larger.)  Panel f) is the image

produced by the same test pattern with the new geometry, and g) is the

reconstruction. The noise is not magnified, because the matrix is well

conditioned. Only the M1 (direct) component is used here, which gives too

favorable a representation of pinhole imaging for neutrons. The examples were

chosen to illustrate the concept of conditioning and show some of the factors

involved.
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Figure 5 is a representation of the matrices used in the previous example.

(Only small blocks of the larger matrices are shown.) The entries are represented

by colors. It is seen in a) that the poorly conditioned matrix (penumbral case)

requires subtractions, whereas the well conditioned matrix in b) (pinhole case) is

diagonal. This is because the response to one source point is covered by only

one pixel.

Matrix conditioning is quantified by the condition number5. For a symmetric

matrix, it is defined as

c = lmax / lmin

where lmin and lmax are the smallest and largest eigenvalues of the matrix.

For realistic geometry, M is almost symmetric. There is another, less simple

formula to be used in the general case, and the special case approaches the

general continuously. For purposes of illustration, the simpler formula

appropriate to the symmetric case is used.

Recall that eigenvalues l are defined in terms of their corresponding

eigenvectors v: Mv = lv. These are vectors whose direction is unchanged upon

multiplication by M. An example in this context is the constant vector, which is

almost an eigenvector. In the limit that nw << li, a uniform illumination of the field

of view would produce a uniform image.

The matrix in Figure 5a) has a condition number of 2.2 ¥ 105 and that in 5b) is

1.0001. The significance of the condition number can be understood as follows.

A small amount di of noise on the image produces some amount of noise on the

reconstructed object.

Mo  = i and M(o + do) = i + di

so M do = di because the system is linear.

All the eigenvalues of M are positive, so ||i|| = ||Mo|| £ lmax ||o|| and



12

||di|| = ||M do|| ≥ lmin ||do||. The double bars represent length in the usual sum of

squares sense. It follows immediately that

 

† 

do
o

£ c
di
i

 .

This means that the fractional noise on the data can be multiplied by a very

large number during reconstruction, so the goal is to keep c small to guarantee a

good reconstruction. What geometric properties keep c small? From Figure 4 it is

apparent that a small aperture is desirable. For neutrons, as lo increases, there is

more metal to go through, so the point spread function (see Figure 2) narrows,

the matrix becomes more nearly diagonal, and c goes down. For X-rays, the only

requirement is that lo >> ro, or equivalently, li >> nw. This makes all the diagonal

entries nearly equal, so the eigenvalues are nearly equal, and c is small. (Think of

a diagonal matrix, where the eigenvalues appear along the diagonal.)

Thus we see that having small ra and big lo decreases noise magnification,

but it also cuts down the signal level, meaning there is a higher fractional noise

to start with. Having n small and w big decreases c, because the response to one

source point covers few pixels, so little subtraction is necessary. However, it also

limits the resolution achievable if there were no noise. What is needed is

systematically to scan parameter space to find the optimum. This is presented in

Section V.

Section IV: Noise Reduction

When there is limited signal amplitude, we must be prepared to sacrifice

condition number to some extent for the sake of particle throughput. Is there

some way to reduce the noise thus introduced? The subject is familiar in Fourier

analysis. Using that method, one discards or reduces the amplitude of the

highest frequencies. This is ideal for a system described by a second order linear

differential equation with constant coefficients, because a sinusoid is an
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eigenmode. For our problem, c can be decreased by discarding eigenvectors. We

want to start with the smallest eigenvalues. Small eigenvalues are bad because

just a little noise on i in the direction of the corresponding eigenvector will be

inverted to a large amount of noise on o. (Small eigenvalues of M correspond to

large eigenvalues of M-1, while the eigenvectors are the same.) Figure 6 shows

the “best” (highest eigenvalued) and “worst” (lowest eigenvalued) vectors for

the same M shown in Figure 3. (Remember that the N-element vectors have been

put back into n ¥ n arrays in Figure 6.) The lowest order vector has a positive

average value. It is normalized so that black is zero and red is one. The others

have zero average value, and they are normalized so that blue-green is zero.

We use the formal procedure of singular value decomposition (SVD) to

produce a new matrix M¢ made up of only the vectors we choose. (The column

space of M is being restricted, producing a singular matrix, which is uninvertible.

SVD gives us a way to “invert” M¢, producing the pseudo-inverse, or Moore-

Penrose generalized inverse. The vectors that are discarded by SVD are actually

eigenvectors of MTM, but because M is almost symmetric, they will be close to

the eigenvectors of M. The important point is that they form a complete basis for

the space of N¥ N matrices, and the ones with the lowest eigenvalues have the

highest spatial frequencies. A possible alternative would be to find M-1, then

discard its eigenvectors, but SVD is computationally simpler. See Reference 5.)

The “worst” ones are discarded first. The number m of vectors retained is the

fourth free parameter (along with ra, n, and lo).

Using SVD with successively fewer vectors fits the data with progressively

smoother reconstructions with less and less information. However, we are not

yet using all the information available. Negative entries in the reconstruction are

unphysical, so it is appropriate to set them to zero. But there is information

contained in those negative elements. A negative value in o, the reconstructed
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object, must have been caused by noise in i. If we adjust the value of the pixel in

i considered most likely to have caused the problem, it will also change other

elements of o that might not have been negative. Thus this information can be

used rather than simply discarded.

The two approaches can be combined. That is, the elements of o are adjusted

to maximize the conditional probability of i given o, P(i|o), subject to the

constraint that o must be non-negative. Rather than using M to calculate Mo, M¢

is used, with the chosen number of retained vectors. We started out using the

Poisson distribution to calculate P(i|o), and adjusting o to maximize it. However, it

was found that, for test patterns, this didn’t give reconstructions as good as

those obtained by minimizing ||M¢o - i||, subject to the same constraint. The

reason for this is not understood. For now, we use the latter method in our code.

Figure 7 gives an example for 1016 particles, n = 26, lo = 22 cm, ra = 4 mm, ro =

50 mm, and w = 1 mm. The test pattern is shown in a), while b) is the inverted

object with no noise reduction. The reconstruction shown in c) has been made

non-negative using constrained optimization with all 476 eigenvectors retained.

The remainder have 239, 170, and 21 vectors retained. 170 produce the minimum

sum of squares error between the reconstruction and the original test pattern,

and would be the choice for M¢. Each panel of Figure 7 was scaled

independently. With no noise reduction, the reconstruction goes both positive

and negative. The zero value is thus blue-green for b), but black for the other

panels.

Section V: Optimization

       There is a design trade-off between matrix conditioning and particle

throughput. In this section, the optimal geometry is found for a given yield and

test pattern.
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The test pattern shown in the first panel of Figure 8 was used to find the best

reconstruction by varying the four free parameters (n, ra, lo, and the number m of

vectors). The total yield into 4p steradians was 8 ¥ 1013, which is presently

achievable for direct drive capsules12 at the Omega laser facility13 at the

University of Rochester. The detector efficiency was taken to be 15%, which

gives an equivalent yield of 1.2 ¥ 1013. The parameters were systematically

scanned. For each choice, a reconstruction was formed from a noisy image and

compared to the test pattern. The best reconstruction was found for n = 30, ra =

4.3 mm, lo = 11.6 cm, and m = 31. A reconstruction employing these parameters is

shown in Figure 8. It should be noted that this was not a sharp optimum, in that

different choices close to this one produced reconstructions almost as good. The

amount of variation in the parameters that causes || Mo – i || to increase by 20%

can be expressed as an uncertainty: ra = 4.3 ± .7 mm, lo = 11.6 ± 1.6 cm, and m = 31

± 2. (The ± signs should not be construed as denoting deviation in the formal

sense.) n = 26 and n = 28 both produced reconstructions that were within 20% as

good as those using n = 30. (The parameters were scanned only for even n.)

The magnification for the foregoing geometry is 300. This might not be

practical for a given experimental situation. If there are constraints, such as how

close the occluder can be to the implosion, the optimum would be found by

scanning the allowed parameter space.

Up until this time, we have modeled the object as a sum of delta functions

located at the centers of the pixels reflected onto the object plane. Now we

calculate the response in the image plane to a source at an arbitrary point in the

object plane, and then invert the image using M-1, which was calculated

assuming all the object points were on the grid. This causes artifacts, even when

there is no statistical noise. Figure 9 demonstrates this for n = 26, w = 1 mm, ra = 4
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mm, lo = 60 cm, and ro = 50 mm. a) shows the image with no noise. b) shows the

reconstruction. The original object points are shown as crosses. Notice the

artifacts, some of which have negative values. c) shows the reconstruction with

noise reduction. The ideal would be for the pixel where the object point lies to

have the highest value, and adjacent pixels to have values proportionate to the

inverse distance between the source point and the centers of those pixels. The

reconstruction with noise reduction closely approaches this ideal. It can be

concluded that the discretization of the problem is justified.

Section VI: Uncertainty estimates

Any time there is random noise in a system, information is lost. The

procedure outlined above involves a further sacrifice of information as the

eigenvectors are discarded to reduce noise. This is a worthwhile trade-off if the

immunity to noise is enhanced, so that the information that is left is reliable. In

this section, a method is outlined to quantify the reliability of the

reconstructions. An example is shown in Figure 10 for n = 24, ra = 30 mm, lo = 21.5

cm, and ro = 50 mm. a) shows the test object. The image is produced, and an

ensemble of twenty different random noise sets is created for 1015 particles. One

of the twenty is shown in b). The noisy images are inverted and noise reduction

is applied. The mean and deviation for the twenty results are plotted in c) at the

positions of the centers of the pixels, for a row of pixels just below y = 0. The

signal to noise is taken to be the mean of the ratios of the values to the error bars

at the highest third of the values. (This might be considered optimistic, but

including S/N at the low values would give a meaninglessly low value.) S/N is 39

for this example.

Notice in b) that there seems to be no evidence of the dip in the center. In the

reconstructions, this information is recovered. Reconstruction is not of much
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advantage when the point spread function is narrow (Figure 4, f and g), but with

neutrons, the PSF is never narrow, and reconstruction gives significant benefit.

If radius or ellipticity is the quantity of interest, a smaller error bar is

obtainable. For the system geometry of the last example, we use as test pattern

the greater of k (1 – (r / 30)2) and zero. r is in microns and k normalizes the object

to a yield of 1015. The measured radius 

† 

r = rj
2 o jjÂ okkÂ  for this test pattern

is 17.30 mm. Next, twenty images with random Poisson-distributed noise are

formed, and the reconstructions computed. The signal to noise for the individual

pixels as computed above is 23.3. The measured radius is 17.38 ± .04 mm, which

gives a S/N of 389.

The next test pattern is the greater of k (1 - (x2 / a2 + y2 / b2)) and zero, where a

= 30 mm, b = 20 mm, and k normalizes the yield to 1015. The measured ellipticity is

† 

b a = y j
2 o jjÂ xk

2 okkÂ  = 0.673. For reconstructions of twenty noisy

images, the S/N for the individual points is 16.7, whereas the measured ratio b/a

is 0.676 ± .002, which is a S/N of 271.

A typical figure of merit for an imaging system is its resolution. The term has

been variously defined. Here it is defined as twice the average rms width of the

reconstructions of an ensemble of noisy images produced by point source

objects (rms width = 

† 

rj
2ojjÂ okkÂ ). Resolution will thus be a function of

yield. For the example of Section V (n = 30, ra = 4.3 mm, lo = 11.6 cm, and m = 31),

the resolution is 9 mm for point sources of 1012 particles. In this test, the fifteen

point source objects were placed randomly in the object plane. They were not on

the grid of points formed by the projection through the aperture of the centers of

the detector pixels, so there were reconstruction artifacts, as well as the statistical

noise appropriate to the stated yield.
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A different measure is the two-point resolution. This is the minimum distance

in the object plane of two point sources that can barely be resolved in the

reconstructions. If the reconstruction of a sum is equal to the sum of the

reconstructions, two-point resolution should be roughly equal to one-point

resolution. Examination of Figure 10 leads us to believe that the reconstruction of

a sum is not equal to the sum of the reconstructions – there is a systematic error

at the center, which is too high. There is no systematic error at the outside flanks

of the curves, which suggests that if only one point source were used, there

would be no systematic error. For practical purposes, this is probably not

important, and the one-point and two-point resolutions both give the information

one wishes to know.

A more typical scenario involves wanting to resolve two features, each of

which has some spatial extent, which are superimposed on the signal from the

rest of the object. All of these signals are in turn superimposed on the noisy

background typical of the environments in which these measurements are made.

It is hard to imagine one number that could be specified a priori that would give

the information one wishes to know: how reliable is a reconstruction that seems

to show particular distinct features? If one is expecting certain features, does a

reconstruction that does not show them constitute a negative result? In general,

one must do simulations in order to answer these questions. Figure 11 shows

reconstructions of twelve noisy images, using the test pattern of Figure 8, the

geometry of Section V, a yield of 8 ¥ 1013, and a detector efficiency of 15%. We

conclude that the reconstructions are reliable in this case.

Section VII: Summary

In designing an experiment by the procedure put forth above, one first

chooses a test pattern of a size, shape, and yield similar to what one expects for

the planned experimental scenario. For example, if one wants to study neutron
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emission from a failed ICF implosion, a theoretical simulation of that failure mode

would be used. The parameters of the system will be chosen by minimizing

||M¢o –  i||, as explained above. Alternatively, resolution or S/N might be used as

the figure of merit.

The occluder will then be constructed. This paper has provided the tools to

explore the question of whether or not it’s worthwhile to build several occluders

for different expected yields, or whether just one can give adequate performance

for a range of results. One can know beforehand how much signal quality one

has to sacrifice for the sake of practical issues concerning occluder fabrication.

The next step is to take the data, invert them, and apply noise reduction.

Uncertainty is ascertained by forming a test pattern that reproduces the essential

features of the reconstruction. Alternatively, the reconstruction itself could be

used as the test pattern. Next an ensemble of noisy test images is formed whose

noise level matches the data. Background noise should be added as well as the

statistical noise from the direct neutron signal. Each of the simulations is

reconstructed and compared to the others to gauge the uncertainty in the

original reconstruction of the data. This was shown in Figure 11, using Poisson

statistics to model the noise. Background noise and detector imperfections have

not been taken into account in these simulations, because the appropriate level

depends on the details of the specific experiment. An analysis of experimental

data obtained at the Omega facility will be presented in an upcoming publication.

This work was performed under the auspices of the U. S. Department of

Energy by the Los Alamos National Laboratory under contract number

W-7405-Eng-36.
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Figure 1: Occluder geometry
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c) d)

Figure 2: Probability of response in the
image plane to a unit point source
a) M1 (direct neutrons)
b) M2 (penetrating neutrons)
c) M3 (scattered neutrons) x 3.5E3
d) M = M1 + M2 + M3

The white circle shows the edge of the aperture
projected onto the image plane, along a line passing
through the source point and the center of the aperture

0 9.76E-10



Figure 3: Representation of the entire matrix
for example of Figure 2
Color scale is on the left (0 to 9.76E-10)
Figure 2d columnized on right (widened for visibility)
Arrow shows position of this column in matrix.
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Figure 4: Illustration of the effects
of matrix conditioning on inversion
  a)  Test Pattern
  b)  Noise-free Image
  c)  Noise-free
       Reconstruction
  d)  Noisy Image
  e)  Noisy Reconstruction
  f)  Noisy Pinhole Image
  g)  Noisy Pinhole
       Reconstruction

b) c)

d) e)

f) g)
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Figure 5: Bad and good
matrix conditioning
  a) Block from matrix shown in Figure 4 b-e
  b) Block from matrix shown in Figure 4 f-g
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Figure 6 a): "Best" eigenvectors of the matrix shown in Figure 3. See text for color scale.

b): "Worst" eigenvectors
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c) d)

e) f)

Figure 7: Effect on reconstruction
of successive removal of eigenvectors
a)  Test Pattern    b)  Reconstruction with no noise reduction
c)  Constrained optimization, all 476 vectors
d-f)  239, 170, and 21 vectors retained, respectively



Figure 8: Example of reconstruction
   using best geometry
   a) Test pattern
   b) Reconstruction, yield = 1.2 x 1013

0 2.66E11           
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Figure 9: Artifacts caused by discretization
a) Image of point sources at arbitrary location   b) Reconstruction   c) Corrected
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Figure 10: Quantification of errors
  caused by statistical noise
  a) test object, 1015 yield
  b) one of twenty noisy images
  c) reconstructions with error bars
   at positions of white crosses
   Solid line shows original object.
The central dip is recovered, even though
it is not visible in the images.
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Figure 11: Reconstructions of twelve different noisy images,
1.2 x 1013 yield. The reconstructions are seen to be reliable. 0 2.66E11           


