A Sociotechnical Framework for Infrastructure Analysis: **Capturing Scale and Complexity Benjamin Sims** Los Alamos National Laboratory September 14, 2009

Orientation

- This talk presents a very broad conceptual framework for understanding infrastructure in terms of scale and/or complexity
- Work in progress
 - Loose ends, inconsistencies haven't fully been worked out
 - Looking for all kinds of input, suggestions, criticisms, connections
 - Ideas for links to ethnographic/historical work
 - Ideas for stronger connections into STS theory

Background

- Interest in synthesizing STS work on infrastructure
 - Including my own work on seismic retrofitting (thesis) and Hurricane Katrina (Disrupted Cities chapter)
- New problems suggested by my involvement with infrastructure protection and modeling communities
 - Broad definitions of infrastructure
 - Need for better conceptual frameworks
 - Need to identify/quantify social relevance of infrastructure
- Interest in understanding infrastructure in terms of its relevance to social worlds and social order generally
 - Beyond context of innovation and system building

• Defense Industrial Base

- National Monuments and Icons
- Chemical
- Commercial Facilities
- Critical Manufacturing
- Dams
- Nuclear Reactors, Materials, & Waste
- Government Facilities
- Energy
- Water
- Information Technology
- Communications
- Transportation Systems
- Postal and Shipping
- Agriculture and Food
- Healthcare and Public Health
- Banking and Finance
- Emergency Services

Covers these "critical infrastructure" sectors:

These are widely-distributed assets but do not directly connect dispersed sites (i.e. they are not networks):

- Defense Industrial Base
- National Monuments and Icons
- Chemical
- Commercial Facilities
- Critical Manufacturing
- Dams
- Nuclear Reactors, Materials, & Waste
- Government Facilities
- Energy
- Water
- Information Technology
- Communications
- Transportation Systems
- Postal and Shipping
- Agriculture and Food
- Healthcare and Public Health
- Banking and Finance
- Emergency Services

- Defense Industrial Base
- National Monuments and Icons
- Chemical
- Commercial Facilities
- Critical Manufacturing
- Dams
- Nuclear Reactors, Materials, & Waste
- Government Facilities
- Energy
- Water
- Information Technology
- Communications
- Transportation Systems
- Postal and Shipping
- Agriculture and Food
- Healthcare and Public Health
- Banking and Finance
- Emergency Services

These are classic infrastructure networks:

- Defense Industrial Base
- National Monuments and Icons
- Chemical
- Commercial Facilities
- Critical Manufacturing
- Dams
- Nuclear Reactors, Materials, & Waste
- Government Facilities
- Energy
- Water
- Information Technology
- Communications
- Transportation Systems
- Postal and Shipping
- Agriculture and Food
- Healthcare and Public Health
- Banking and Finance
- Emergency Services

These are something more complex than a network:

- Q: Are all of these things even infrastructure?
- A: Yes, I think
 - Distributed, standardized, tie together places and practices
- Q: How can such diverse entities all be defined as infrastructure?
- A: Scale

- Defense Industrial Base
- National Monuments and Icons
- Chemical
- Commercial Facilities
- Critical Manufacturing
- Dams
- Nuclear Reactors, Materials, & Waste
- Government Facilities
- Energy
- Water
- Information Technology
- Communications
- Transportation Systems
- Postal and Shipping
- Agriculture and Food
- Healthcare and Public Health
- Banking and Finance
- Emergency Services

Defining Infrastructure

• Infrastructure is:

- Embedded:
 - "Infrastructure is sunk into, inside of, other structures, social arrangements, and technologies" (Star and Ruhleder)
- Distributed:
 - "Infrastructure has reach beyond a single event or one-site practice" (Star and Ruhleder)
 - Infrastructure is also integrated across events and sites; it connects events and sites
- Standardized:
 - Standardized sociotechnical components
 - Standardized interfaces: "Infrastructure takes on transparency by plugging into other infrastructures and tools in standardized fashion" (Star and Ruhleder)
 - Standardized interactions with users
- As a result, infrastructure has a universal quality

The Importance of Scale

- Paul N. Edwards (2003): The significance of infrastructure is that it cuts across scales
 - "By linking macro, meso, and micro scales of time, space, and social organization, [infrastructures] form the stable foundation of modern social worlds" (Edwards)
- At a macro scale, function is more important than specific technologies and practices
- Larger-scale (spatially, socially) aspects of infrastructure tend to be more stable, while specific technologies and components may change more frequently

Scale and Infrastructure Evolution

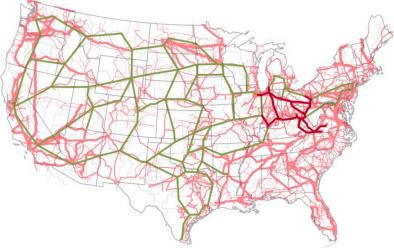
		Infrastructures	
	Systems	Networks	Internetworks or Webs
Key actors	System builders Users (adjustment roles)	Gateway builders Standards bodies Corporations & governments Users (transformative roles)	Gateway builders Standards bodies Corporations & governments Users (foundational roles)
Elements	Heterogeneous components and subsystems	Heterogeneous systems	Heterogeneous networks
Gateways and standards	Dedicated or improvised	Generic or meta-generic	Generic or meta-generic
Control vs. coordination	Control Central, strong	Control and coordination Partially distributed, moderate strength	Coordination Widely distributed, weak Reliant on other infrastructures
Boundaries	Closed, stable	Open, reconfigurable	Open, reconfigurable Virtual or second-order large technical systems
Examples	Local electric power company Enterprise computing (e.g. banks, insurance companies)	Railroad; electric power grids Grid computing NEES, GEON National weather services	Intermodal freight Global telephone system (fixed + mobile + VOIP) Internet and WWW World Weather Watch

Source: Edwards, Jackson, Bowker and Knobel (2007)

Scale and the Social Worlds of Infrastructure

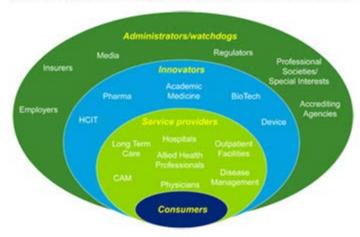
- Extend this categorization in several ways
 - Talk about coexistence of different scales of infrastructure, rather than changes of scale over time of individual infrastructures
 - Capture scales of infrastructure integration below and above networks (NIPP list)
 - Capture relevance of infrastructure to social worlds with both insider and outsider connections to technology
- Three proposed levels of infrastructure
 - Boundary systems
 - Networks
 - Functional sectors

Levels of Infrastructure


- Boundary Systems
 - Sociotechnical entities that have standardized roles/meanings across locations but do not themselves tightly couple locations
 - Some infrastructure is primarily composed of these entities:
 - Chemical production
 - Manufacturing
 - These entities can also be components of infrastructure networks
 - Power plants

Levels of Infrastructure

- Networks
 - Distributed collections of standardized entities that tightly couple dispersed locations to form a network
 - Examples:
 - Electrical grid
 - Road network
 - Internet



Encompass boundary systems (interchanges, connectors)

Levels of Infrastructure

• Functional Sectors

- Distributed collections of standardized entities and practices that tightly couple dispersed locations at multiple levels of practice and technological integration
- Examples:
 - Health care
 - Banking and finance
 - World Wide Web
- Encompass and depend on multiple networks
- Create continuous cultural forms across locations

The U.S. Health System: big, complex, fragmented and expensive

Scales of Integration

	Boundary Systems	Networks	Functional Sectors
Spatial	 Micro scale Strong interdependencies at local scale Weak interdependencies globally, may be handled by other infrastructures 	 Meso scale Moderate interdependencies at local and global scales 	 Macro scale Strong interdependencies at local and global scales Interdependencies are denser, broader, and via multiple modes of interaction
Temporal	 Changes typically take place in years- decades 	 Changes typically take place in decades 	 Changes typically take place in decades-centuries
Production	 Resources → Commodities 	 Commodities → Services 	 Services → Packages

Definitional Characteristics

	Boundary Systems	Networks	Functional Sectors
Embedding	 Embedded in local practices and sites Embedded in infrastructure networks and functional sectors 	 Embedded in local practices at numerous sites and in generic global practices Embedded in functional sectors 	 Embedded in dominant cultural frames and social structures at numerous sites
Distribution	 Sites have common relationship to networks and forms of practice 	 Same as at left, plus tight sociotechnical coupling between sites 	 Multiple dimensions of sociotechnical and cultural continuity between sites
Standardization	 Standardized equipment and practices Standardized outputs 	 Standardized connectors, gateways, interfaces, and protocols 	 Standardized cultural frames, gateways and roles

Social Worlds

	Boundary Systems	Networks	Functional Sectors
Characteristic actors	 Skilled workers Engineers Line managers 	 Field technicians System analysts System managers Customer service representatives 	 Service workers Human resource managers Client-oriented professionals
Types of work	 Invisible/"dirty" work Low status Low cultural relevance 	 Mix of visible/invisible, clean/dirty Moderate status Moderate cultural relevance 	 Some work is highly visible and "clean" Some work is high status High cultural relevance
Internal ways of knowing	 Time and motion studies System models 	 Systems analysis Network dynamics models 	 Policy/econ analysis Sociotechnical simulations (?)
Connection to external social worlds	 Indirect, via higher levels of infrastructure 	 Provide services directly to users Limited interaction with users 	 Provide complex, interactive services to users in shared social settings

STS Analysis Approaches

	Boundary Systems	Networks	Functional Sectors
Key theoretical perspectives	 Theories of interaction and construction of meaning in practice 	 Organizational theory, ANT approaches 	 Structural/economic theories (Marx, Durkheim)
Potential methodologies	 Ethnographic studies, one or several sites 	 Multi-site ethnographic studies Historical studies User studies 	 Multi-site/multi- mode ethnographic studies Cultural studies Political/economic studies
Useful levels of access	 Work sites System design and engineering Local management decision making 	 Workers in the field System/network analysis and planning Standard-setting bodies Central management decision making 	 Internal-external interaction sites Policy analysis and planning Regulatory bodies Professional associations Government agencies

Conclusion: Advantages of this perspective

- Ties together existing STS literature on infrastructure
 - Definitional characteristics, scale, system building
- Encompasses infrastructure connections to both builder/worker and user social worlds
- Provides guidelines for appropriate methodologies for studying infrastructure at different scales
 - Implications for STS analysis, infrastructure simulation, policy and planning
- Sensitive to issues that might predict social impact of infrastructure disruption
 - Spatial and temporal scales of dependencies
 - Nature of user interfaces/dependencies

Discussion

- Questions?
- Loose ends, inconsistencies?
- Ideas for links to ethnographic/historical case studies
- Ideas for stronger connections into STS theory (ANT, SCOT, etc.?)