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ABSTRACT

Recently a new class of coarse-grained equations, known as a models, have been proposed for the mean
motion of an ideal incompressible fluid. The use of one such model to represent the time-mean component of
a turbulent b-plane circulation characterized by potential vorticity mixing is considered. In particular, the focus
is on the wind-driven circulation in a shallow ocean basin, a problem well studied as a prototype of more realistic
ocean dynamics. The authors demonstrate the ability of an a model to reproduce qualitatively the structure of
a four-gyre circulation that forms (in the time mean) when the barotropic vorticity equation is driven by a
symmetric, double-gyre wind forcing, and when the dissipation is weak. This is offered as a first step in assessing
the utility of the a-model approach to simulating more complex geophysical flows.

1. Introduction

In a variety of turbulent geophysical flows, the ten-
dency of potential vorticity to become homogenized in-
side a closed streamline has been recognized (Rhines
and Young 1982), and this homogenization has served
as a basis for eddy parameterizations. In most such pa-
rameterizations, the divergent part of the eddy potential
vorticity flux is modeled as a downgradient transfer,
resulting in a purely dissipative closure. In this paper
we consider an alternate route to homogenization of
potential vorticity and present preliminary results from
our investigation of a class of fluid descriptions to model
geophysical fluid turbulence.

The evolution of the time-mean flow in the simple
case of the barotropic vorticity equation is given by

]q
1 = · (u q) 1 = · u9q9 5 F 1 D, (1)

]t

where q 5 ¹2c 1 by is the potential vorticity, c is the
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velocity streamfunction, F is the forcing, D is the dis-
sipation, an overbar denotes the time mean, and a prime
denotes the difference from the mean (see below for
other notation). In (1) it is clearly only the divergent
component of the eddy flux of potential vorticity u9q9
that can drive the mean flow, and the aforementioned
downgradient closure for (1) takes the form

(u9q9) 5 2k=q, (2)div

where ( )div denotes the divergent component ofu9q9
. This closure is purely dissipative.u9q9

Holm et al. (1998) proposed a model for the mean
motion of ideal incompressible fluids wherein the non-
linear fluid transport term u · ¹u is modified into the
advection of a momentum density v 5 (1 2 a2¹2)u by
the usual velocity u plus other nonlinear dispersive
terms:

]v
2 T 21 u · =v 2 a (=u) · ¹ u 5 2=p, = · u 5 0.

]t
(3)

(Note that, when a is set to zero, the usual Euler equa-
tions result.) In a complementary fashion, the transport
velocity u for such a flow may be viewed as Helmholtz-
smoothed relative to the advected quantity v. Such a
model is obtained by introducing a length scale a—
determined by problem dynamics—in the Euler–Poin-
care formalism and conserving an energy
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1
2 2 2(|u| 1 a |=u| ) dx (4)E2

that also accounts for the spatial fluctuations of the ve-
locity field in place of the usual kinetic energy

1
2|u| dx. (5)E2

Conservation of the latter kinetic energy results in the
usual Euler equations. For details of the derivation of
(3) and its other interesting properties, the reader is
referred to Holm et al. (1998) and Shkoller (1998).

Using a vorticity streamfunction formulation in two
dimensions, (3) can be written as

]z
2 2 21 2 21 (1 2 a ¹ ) J [c, (1 2 a ¹ )z] 5 0, (6)

]t

where z 5 k · ¹ 3 u 5 ¹2c is the (relative) vorticity.
When a 5 0 in (6), the two-dimensional (inviscid and
unforced) Euler equation

]z
1 J [c, z] 5 0 (7)

]t

is obtained.
Until recently, most work on equations of the type of

(3) seems to have been of a mathematical nature. It is
only recently, with the rederivation by Holm et al.
(1998), that their potential as models for coarse-grained
hydrodynamics has been recognized. Chen et al. (1998)
used a steady and parallel flow solution of a viscous a
model to fit turbulent channel data, and Chen et al.
(1999) considered a viscous a model to study homo-
geneous and isotropic turbulent scalings in three di-
mensions. Nadiga (2000) considered statistical equilib-
ria of (6) and showed that the scaling of the equilibrium
states of the model for conserved energy and enstrophy
reproduced the corresponding scaling for the Euler
equations on the large scales, while greatly deemphas-
izing the importance of the small scales. Nadiga and
Shkoller (2001), in the content of two-dimentional tur-
bulence, showed how scales much larger than a can be
affected due to an enhancement of the inverse cascade
of energy by a.

In this paper, we examine the utility of an extension
of (6) to the b-plane barotropic vorticity equation by
modeling a turbulent flow that can be directly realized
in eddy-permitting simulations of the barotropic vortic-
ity equation. The outline of the rest of the paper is as
follows: In the next section, we present the a model
corresponding to the barotropic vorticity equation. In
section 3, we briefly recapitulate the phenomenon of the
formation of a time-mean four-gyre circulation in a
strongly turbulent b-plane barotropic vorticity equation
flow driven by the classic double-gyre wind forcing. In
section 4 we show that, with a judicious choice of
boundary conditions, the a-barotropic vorticity equation
can model the important, eddy-driven components of

the time-mean four-gyre circulation. We summarize our
results in section 5.

2. The barotropic vorticity equation and its a
model

The unforced and inviscid barotropic vorticity equa-
tion may be written as

]q
1 J [c, q] 5 0, (8)

]t

where q 5 Roz 1 y is the potential vorticity, z 5 ¹2c
is the relative vorticity, c is the velocity streamfunction,

]c ]q ]c ]c
J [c, q] 5 2 1 ,

]y ]x ]x ]x

and Ro is the Rossby number. We consider a rectangular,
closed basin on a beta plane with the y coordinate (2L
# y # L) increasing northward and with the x coordinate
(0 # x # L) increasing eastward. We define the Rossby
number by

2
d UiRo 5 5 ,

21 2L bL

where di is the inertial boundary layer thickness, the
reference length L is the width of the domain, U is a
reference velocity, and b is the (north–south) gradient
of rotation. For future reference, we mention that in the
forced–dissipative cases to be considered, we will
choose the reference velocity to be the Sverdrup velocity
corresponding to the applied wind stress forcing. With
such a choice, the magnitude of the wind stress curl
forcing will be unity.

Holm et al. (1998) construct an a model for the Euler–
Boussinesq equations in the presence of rotation (as-
suming a b-plane approximation) and stratification and
refer to them as the a–Euler–Boussinesq equations
[their (10)]. While the the reader is referred to Holm et
al. (1998) for details of that construction, we consider
the specialization of the so-called a–Euler–Boussinesq
equations to two dimensions. On taking the curl of the
a–Euler–Boussinesq equations [(10) of Holm et al.
1998] in two dimensions, we obtain

]q
2 2 21 2 21 (1 2 a ¹ ) J [c, (1 2 a ¹ )q] 5 0. (9)

]t

We call this the a-barotropic vorticity equation. When
a is set to zero in the above equation, the usual unforced
and inviscid barotropic vorticity equation (8) is ob-
tained.

In (9), a is a nondimensional turbulence correlation
length, which we consider to be the ratio of a length
scale appropriate to the eddy activity to be modeled and
the reference length L. We remark that (9) may also be
written in the form
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FIG. 1. Contour plots of the time-averaged streamfunction and potential vorticity. The Rossby
number for this double-gyre wind-forced beta-plane circulation is 0.01, the Munk scale is 0.04
with superslip sidewall boundary conditions, and the grid spacing is 0.02. The contour intervals
are 0.15 for streamfunction and 0.10 for potential vorticity. The instantaneous flow is highly
turbulent.

a]q
a1 J [c, q ] 5 0, (10)

]t

where
a 2 2q 5 (1 2 a ¹ )q. (11)

This form makes transparent the conservative and ad-
vective nature of the model equation. In this preliminary
study, in writing (11), we have considered a to be con-
stant. However, in a more realistic situation a would be
variable and could, for example, depend on the local
value of eddy kinetic energy.

Even though the net number of derivatives in (9) is
the same as in (8), in the sense that the Helmholtz op-
erator acting on q is reversed by an inverse Helmholtz
operation after the Jacobian is evaluated in (9), it re-
mains that a new boundary condition has to be specified
for q. This is evident by considering the evolution of
qa as given, for example, by (10) and (11). To the extent
that the outer gyres are driven by the (eddy) mixing of
potential vorticity (Greatbatch and Nadiga 2000, here-
after GN), we choose for this new boundary condition

]q
5 0. (12)

]n

3. Four-gyre circulation with double-gyre wind
forcing

When the barotropic vorticity equation (8) is forced
by the Ekman pumping resulting from a double-gyre

wind stress [F 5 sin(py)] and the dissipation D is weak,
the instantaneous flow is highly turbulent, but the time-
mean flow shows a four-gyre structure (see GN). Figure
1 shows the time-mean streamfunction and potential
vorticity contours for such a case where the Rossby
number was 0.01, and where a Laplacian mixing of
momentum

3
d2 2D 5 ¹ z,1 2L

with an associated Munk scale (d2/L) of 0.04 was used
in conjunction with superslip boundary conditions. The
flow was resolved on a 51 3 101 grid giving a grid
spacing Dx/L of 0.02, enough to marginally resolve the
Munk scale. Unless stated otherwise, all computations
presented in this article were carried out using second-
order finite difference spatial discretization with Ar-
akawa Jacobian and a (nominally) fifth-order, adaptive
time step, embedded Runge–Kutta Cash–Karp algo-
rithm time marching scheme. (For details, see GN.)

In Fig. 1, the two inner gyres circulate in the same
direction as conventional wind-driven gyres, while the
two outer gyres at the northern and southern ends of
the basin circulate in the opposite direction and are driv-
en by the eddy flux of potential vorticity (as can be seen
by the mean vorticity balance for each of the four gyres
in Table 1). Furthermore, it is clear from Table 1 that
the dominant balance is between the wind forcing and
the (divergence of the) eddy flux of potential vorticity
(with explicit dissipation playing a minor role). When
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TABLE 1. The mean vorticity balance for the eddy-permitting run.
The dominant balance is between forcing and the divergence of eddy
flux of potential vorticity.

Gyre 2J(c9, q9) F D

Southern outer
Subtropical wind-driven
Subpolar wind-driven
Northern outer

0.148
0.476

20.421
20.203

20.141
20.492

0.438
0.195

20.008
0.017

20.016
0.007

FIG. 2. The steady-state fields using a downgradient parameterization. Rossby number is 0.01
and the dissipative term, a Laplacian mixing of potential vorticity, arises from a parameterization
of the divergent component of the eddy potential vorticity flux as a down the gradient of mean
potential vorticity. The associated Munk scale is 0.17 and a nonormal potential vorticity flux
boundary condition is used. The grid spacing is 0.04. The contour intervals are 0.05 for stream-
function and 0.10 for potential vorticity.

the importance of the eddy flux of potential vorticity is
reduced by increasing the explicit dissipation, the outer
counterrotating gyres disappear and only a conventional
double-gyre circulation appears in the time mean (see
Fig. 8 of GN). The formation of such a time-mean four-
gyre circulation, given a double-gyre wind forcing, is
quite robust and does not depend sensitively on either
the Rossby number, the form of dissipation, or the
boundary conditions as long as the dissipation is weak.

While it is clear that the parameter regime we consider
must not be terribly geophysically relevant because a
time-mean, four-gyre circulation is not observed in na-
ture, we note that a choice of a larger value of dissipation
that would have resulted in a turbulent double-gyre cir-
culation would have worked fine, but for the disadvan-
tage of rendering more intricate the process of evalu-
ating parameterizations.

Following the tendency exhibited in Fig. 1 for po-
tential vorticity to mix due to eddy activity in the north-
ern and southern parts of the domain, the qualitative
aspects of the time-mean flow are obtainable (in a coars-

er-resolution run) by a downgradient parameterization
of the eddy flux of potential vorticity as in (2) (see GN).
Then, the eddy-parameterized model equations are

]q
1 J [c, q] 5 F 1 D, D 5 = · (k=q), (13)

]t

where the variables are to be interpreted as time aver-
ages; Fig. 2 shows the result. In this parameterized case
with the same Rossby number as before, a spatially
uniform k corresponding to a Munk scale of about 0.17
was used, and the resolution was cut in half in each
direction. Balance is, by design, between the forcing
and dissipation terms; this is verified in Table 2. We
remark that the correspondence between the time mean
of the eddy-permitting simulation (Fig. 1) and the steady
state of the downgradient parameterized model (Fig. 2)
is only qualitative.

4. An alternative parameterization

In this section, we consider steady states of the
forced–dissipative version of the a-barotropic vorticity
equation (9),

]q
2 2 21 2 21 (1 2 a ¹ ) J [c, (1 2 a ¹ )q] 5 F 1 D, (14)

]t

as a model for the eddy-driven mean flow previously
discussed. Recognizing that the problem is forced and
the left-hand side of (14) is conservative, one is forced
to introduce dissipation D in order to ensure that kinetic
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TABLE 2. The mean vorticity balance for the downgradient-param-
eterization case. The balance is by design between the forcing and
dissipation.

Gyre F D

Southern outer
Subtropical wind-driven
Subpolar wind-driven
Northern outer

20.267
20.369

0.369
0.266

0.268
0.367

20.367
20.268

FIG. 3. The steady-state fields from the a-parameterized model. Rossby number is 0.01 and the
dissipative term is chosen to be Rayleigh damping of relative vorticity to ensure that this term
does not represent downgradient transfer. The Stommel scale associated with this dissipation
operator is 0.07L. The grid spacing is 0.04. The contour intervals are 0.05 for streamfunction and
0.10 for potential vorticity.

energy and potential enstrophy remain bounded. In this
context, we briefly discussed in the previous section 1)
how eddies in the simulation that permitted eddies tend-
ed to mix potential vorticity and 2) how such a mixing
was achievable in a parameterized run by using a down-
gradient approximation for the eddy potential vorticity
flux, resulting in a dissipation of the form indicated in
(13). Now, in the context of the a parameterization con-
tained in the left-hand side of (14), if we were to choose
the dissipation D to be of the same form as in (13), our
conclusion would not be compelling. That is to say, it
would be difficult to separate out the effects of the a
parameterization and the dissipation term (related to the
downgradient approximation). To this end, we choose
a form of dissipation that is not effective in modeling
the downgradient nature of the eddy flux of potential
vorticity. We choose Rayleigh damping of relative vor-
ticity z:

dsD 5 2 z.
L

That this form of dissipation acting alone is ineffective
in tending to homogenize potential vorticity will be
demonstrated later.

In Fig. 1, the return western boundary flow in the
conventional gyres extends to about 0.45L in the east–
west direction and the outer gyres extend to about 0.40L
latitudinally. Thus, the scale over which eddy activity
affects the mean flow is about 0.45L, and we choose
this as the length scale a in (14). (While we could ex-
amine the wavenumber spectra of the eddy-permitting
runs to obtain a, in this preliminary study we are limited
by the small dynamic range of such spectra.) Figure 3
shows the steady-state circulation resulting from the pa-
rameterized model. In this parameterized setup, while
the domain size is the same as before, the resolution
has been cut in half in each direction compared to the
eddying run: Dx/L 5 0.04. The averaging length scale
a is 0.45L and a Rayleigh friction corresponding to a
Stommel boundary layer scale of 0.07L was used at the
same value of Rossby number of 0.01. While we chose
a as roughly the average of the lengths of the two non-
linear features as previously discussed, qualitatively
similar results are obtained for quite a wide range of a
(0.3L # a # 0.7L). Again, with this alternative param-
eterization, the four-gyre structure and the homogeni-
zation of potential vorticity in the region of the outer
gyres is evident and robust.

As further proof that it is indeed the a parameterization
that is modeling the effects of eddies and thereby mixing
potential vorticity, we repeat the previous run but with
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FIG. 4. The steady-state fields from the previous run with a parameterization turned off. The
contour intervals are 0.10 for streamfunction and 0.10 for potential vorticity.

TABLE 3. The mean vorticity balance for the dispersive-parame-
terization case. Note the importance of the inviscid model term in
this three-term balance as compared to the forcing-dissipation balance
in the downgradient-parameterization case. Here H stands for the
Helmholtz operator (1 2 a2¹2).

Gyre H21 J[c, Hq] F D

Southern outer
Subtropical wind-driven
Subpolar wind-driven
Northern outer

0.388
0.264

20.265
20.387

20.136
20.500

0.500
0.135

20.252
0.235

20.235
0.252

a set to zero. The steady-state solution for this case,
shown in Fig. 4, corresponds to a steady double gyre.
For this case, the Arakawa form of the Jacobian, which
conserves both energy and enstrophy, was not used since
it leads to grid scale oscillations in the potential vorticity
field near the western boundary. Instead, following Ve-
ronis (1966), we chose a form of the Jacobian that only
conserves energy, but has the useful property that the
boundary values of relative vorticity are never needed.
It is for this reason that potential vorticity is not defined
on the boundary points in Fig. 4.

Indeed, what is interesting with the a-parameterized
run is that there is no explicit downgradient transfer
term and the modeling of eddies results from a modi-
fication to the advective term. To the extent that the
modeling of eddy effects in the a model is adiabatic,
the a model is similar to the Gent–McWilliams param-
eterization of the effects of eddies in noneddy resolving
models (see, e.g., Gent et al. 1995), wherein a bolus or
eddy-transport velocity is added to the velocity that ad-
vects scalars.

The vorticity balance for the case with dispersive pa-

rameterization is shown in Table 3. If each of the gyres
is considered individually, it is clear that equilibrium is
achieved by a three-term balance with the inviscid non-
linear dispersive term playing a significant role. This is
unlike the forcing–dissipation balance achieved when
the downgradient parameterization is used. Further, if
one considers the two halves of the basin separated by
the zero wind stress curl line, the dominant balance in
the case of a parameterization turns out to be between
the wind stress curl forcing and the inviscid model term,
with the dissipation playing only a minor role in close
analogy with the mean vorticity balance of the eddy-
permitting case.

Finally, we note that it is only the qualitative aspects
of the four-gyre structure that are reproduced in the new
parameterization considered, in that neither the mag-
nitude of the circulation nor the structure of the potential
vorticity field is accurately reproduced. This is 1) in-
dicative of the need for a spatially variable a in the
dispersive parameterization, and 2) consistent with a
similar lack of detailed correspondence between the
steady-state circulation that results when a spatially con-
stant diffusivity is used in the downgradient parame-
terization case and the time-mean circulation of the
eddy-permitting simulation.

5. Summary and discussion

These are preliminary results from a study of the ap-
plicability of the a models to modeling geophysical fluid
turbulence, and more work is necessary to understand
the relevance of these models to describing the oceans
and the atmosphere. That apart, we have shown that a
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time-mean circulation of the barotropic vorticity equation
with an important eddy-driven component can be repro-
duced using one such eddy parameterization. This pa-
rameterization arises from a specialization to the baro-
tropic vorticity equation of a class of ideal incompressible
fluid models proposed to model mean flow. These models
are derived by considering the mean dispersive effects
of rapid fluctuations over a length scale a.

From the point of view of geophysical fluid dynamics,
this new parameterized model shows that the tendency
of eddies to mix potential vorticity in certain situations
can be successfully parameterized in a manner very dif-
ferent from the usual dissipative mixing term that arises
from assuming a downgradient form for the eddy flux
of potential vorticity. As to whether the new model is
indeed better than the usual downgradient mixing pa-
rameterization is a question that requires further study.

Acknowledgments. The authors gratefully acknowl-
edge discussions with Richard Greatbatch, and thank
the referees for their constructive suggestions. Computer
resources for this work were made available in part by
the Institute for Geophysics and Planetary Physics at
Los Alamos National Laboratory. This work was sup-
ported by the U.S. Department of Energy’s Climate
Change Prediction Program (CCPP).

REFERENCES

Chen, S., C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne,
1998: The Camassa–Holm equations as a closure model for tur-
bulent channel flow. Phys. Rev. Lett., 81, 5338–5341.

——, D. D. Holm, L. Margolin, and R. Zhang, 1999: Direct numerical
simulations of the Navier–Stokes alpha model. Physica D, 133,
66–83.

Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams,
1995: Parameterizing eddy-induced tracer transports in ocean
circulation models. J. Phys. Oceanogr., 25, 463–474.

Greatbatch, R. J., and B. T. Nadiga, 2000: Four-gyre circulation in a
barotropic model with double-gyre wind forcing. J. Phys. Ocean-
ogr., 30, 1461–1471.

Holm, D. D., J. E. Marsden, and T. S. Ratiu, 1998: Euler–Poincaré
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