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ABSTRACT

Results from a barotropic vorticity equation model driven by symmetric, double-gyre wind forcing are de-
scribed. The authors work in a regime in which the model reaches a state of turbulent equilibrium. The time-
average of the statistically steady state exhibits a four-gyre structure, in contrast to the usual two gyres associated
with symmetric double-gyre wind forcing. The four-gyre structure is found in model runs using either free-slip
or superslip boundary conditions, and with either Laplacian or biharmonic mixing for the dissipation. It is shown
that the vorticity budget of both the inner and outer gyres is dominated by a balance between the wind stress
curl and the divergence of the eddy potential vorticity flux, with the explicit dissipation playing a much smaller
role. The two inner gyres circulate in the same sense as the wind stress curl and are equilibriated, for the most
part, by the eddy flux of potential vorticity. The outer gyres, on the other hand, circulate in the opposite sense
to the wind stress curl and are driven by the eddy flux of potential vorticity. It is shown that the gross features
of the time-averaged state can be reproduced by a parameterized model in which the divergent part of the
potential vorticity flux is represented as a downgradient transfer, and a boundary condition of no normal flux
of potential vorticity is applied along the model boundaries. In contrast to the eddy resolving model, the four-
gyre structure in the parameterized model depends strongly on the choice of side boundary condition.

1. Introduction

A feature of unforced geostrophic turbulence with
weak dissipation is the tendency for potential vorticity
to homogenize (e.g., Bretherton and Haidvogel 1976;
Cummins 1992; Wang and Vallis 1994; Dukowicz and
Greatbatch 1999; by ‘‘weak’’ dissipation, we mean dis-
sipation that is strong enough to influence the dynamics,
but not so strong as to suppress turbulence). Associated
with the homogenization, the circulation splits into two
separated gyres, one at the northern end of the basin
and the other at the southern end. The tendency toward
homogenization is consistent with parameterizing the
divergent part of the eddy potential vorticity flux as a
flux down the mean potential vorticity gradient (Rhines
and Young 1982). Potential vorticity homogenization is
also a feature of wind-driven, multilevel quasigeo-
strophic models (e.g., Holland et al. 1984) and model
simulations of free jets (e.g., Jayne et al. 1996).

Recently there has been much interest in the response
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of simple models driven by double-gyre wind forcing.
For example, it is has been shown that such models can
exhibit multiple equilibria and low frequency variability
(Cessi and Ierley 1995; Jiang et al. 1995; McCalpin
1995; McCalpin and Haidvogel 1996; Nadiga and Holm
1997). In this paper, we consider the barotropic vorticity
equation under double-gyre wind forcing in a highly
turbulent regime that has weak dissipation. We find
time-mean circulations that are characterized by a four
gyre structure. The two inner gyres circulate in the same
sense as the wind stress curl forcing and are equilibriated
by the eddy flux of potential vorticity, while the two
outer gyres correspond to the northern and southern
gyres found in geostrophic turbulence experiments and
are driven by the eddy flux of potential vorticity. We
show that the result is robust in the sense that it is
obtained in experiments that use either Laplacian or
biharmonic mixing of momentum, either free or super-
slip boundary conditions, and for two widely different
Rossby numbers. We also show that the four-gyre struc-
ture is reproduced in a model in which the divergent
part of the eddy flux of potential vorticity is parame-
terized as a downgradient transfer and a condition of
no normal flux of potential vorticity is applied along
the model boundaries.

Griffa and Salmon (1989) have suggested that Fo-
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FIG. 1. Schematic of the model.

fonoff-like inertial gyres, to which the outer two of our
four gyres correspond, are inhibited in the barotropic
vorticity equation under the conventional double-gyre
wind forcing we use. Ozgokmen and Chassignet (1998)
reiterate the above. These authors show the emergence
of Fofonoff-like flows in a two-level quasigeostrophic
model under double-gyre wind forcing and attribute
their emergence to the presence of density stratification.
Our results, on the other hand, demonstrate that a four-
gyre structure can indeed emerge under double-gyre
wind forcing in a single-layer barotropic model. The
reason is that in the highly turbulent regime in which
we work, the eddy flux of potential vorticity dominates
the explicit dissipation in the vorticity balance and bal-
ances the vorticity input from the wind stress forcing.
The eddy flux of potential vorticity leads to a tendency
for potential vorticity to homogenize and it is this ten-
dency, in the presence of the northern and southern
boundaries, that drives the outer gyres.

The plan of the paper is as follows. Section 2 de-
scribes the basic model and section 3 the model results.
Section 4 describes the parameterized model and section
5 provides a summary and discussion.

2. The basic model

We integrate the barotropic vorticity equation

]q
1 J(c, q) 5 F 2 D, (1)

]t

where q 5 ¹2c 1 by is the potential vorticity, c is the
velocity streamfunction, F is the forcing, D is the dis-
sipation and J( , ) is the Jacobian operator given by

]c ]q ]c ]q
J(c, q) 5 2 1 . (2)

]y ]x ]x ]y

We work in a rectangular, closed basin on a beta plane
with the y coordinate increasing northward and the x
coordinate eastward. The center of the basin is at y 5
0, and the northern and southern boundaries are at y 5
6L, respectively, with the western and eastern bound-
aries at x 5 0 and x 5 L (see Fig. 1).

A nondimensionalization of (1) using the length scale
L, a timescale L/U, and the Sverdrup velocity scale U
5 pt 0/rHbL, where t 0 is the amplitude of the wind
stress (in N m22), r the density and H the depth of the
fluid, leaves the form of (1) unchanged, but leads to

q 5 Ro¹2c 1 y, (3)

where Ro 5 (di/L)2 5 U/bL2 is the Rossby number and
di 5 (U/b)1/2 is the Rhines scale.

The wind forcing F has a double-gyre structure given
by

F 5 sin(py). (4)

Note that the amplitude of the wind forcing is unity
given the (Sverdrup) scaling used in the nondimension-

alization of velocity. The dissipation D is due to either
Laplacian or biharmonic mixing of momentum. For La-
placian mixing

3
d 2 2D 5 2 ¹ z, (5)1 2L

where z 5 ¹2c is the relative vorticity and either a free-
slip boundary condition of

z 5 0 (6)

or a superslip boundary condition of

]z
5 0 (7)

]n

is applied along the boundaries. Here, ]/]n denotes a
derivative normal to the boundary, and d2 is the Munk
scale given by (d2/L)3 5 A2/bL3. The use of free-slip
and superslip boundary conditions in geostrophic tur-
bulence experiments, and their justification, has been
discussed in detail by Cummins (1992) and Wang and
Vallis (1994). For biharmonic friction

5
d4 4D 5 ¹ z, (8)1 2L

with

z 5 0 (9)

and
2] z

5 0 (10)
2]n

along the boundaries. Here (d4/L)5 5 A4/bL5 and d4 is
the width of the Munk boundary layer appropriate to
biharmonic friction.

Equation (1) is finite differenced using the Arakawa
discretization (Arakawa 1966) for the Jacobian and cen-
tered differencing for the spatial discretization of the
other terms. In order to run the model with the superslip
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TABLE 1. The model experiments.

Run Dissipation
Boundary
condition

Munk
scale

Rhines
scale

Grid
spacing

1
2
3
4
5
6

Laplacian
Laplacian
Biharmonic
Biharmonic
Laplacian
Parameterized

Freeslip
Superslip
Freeslip
Freeslip
Freeslip
]q/]n 5 0

0.04
0.04
0.04
0.02
0.03
0.08

0.10
0.10
0.10
0.04
0.04
0.04

0.02
0.02
0.02
0.01
0.02
0.04

FIG. 2. Contour plots of the instantaneous nondimensional streamfunction (left panel) and po-
tential vorticity (right panel) in eddy-resolving run 1. The contour interval for both streamfunction
and potential vorticity is 0.15. Lighter lines are used for negative-valued contours and heavier
lines for zero and positive-valued ones; this convention remains the same in all the contour plots
to follow.

boundary condition (7), it is necessary to update q on
the boundary of the model domain. We do this using
the method discussed in Salmon and Talley (1989) in
order to ensure that the advective fluxes are exactly
energy and enstrophy conserving in the absense of forc-
ing and dissipation. The time stepping is carried out
using a (nominally) fifth-order embedded Runge–Kutte
Cash–Karp scheme (Press et al. 1992). In addition to
providing better time accuracy compared to the usual
leapfrog time discretization, this forward-time discret-
ization obviates the need for time-filtering used to re-
move the computational mode in the leapfrog discret-
ization.

3. Model results

The model experiments are summarized in Table 1.
We consider two different Rossby numbers, free-slip
and superslip boundary conditions, and the effect of
using Laplacian or biharmonic mixing. All the experi-
ments are eddy-resolving and are run for 100 nondi-

mensional time units, a unit of time being the turnover
time for a basin-scale gyre circulating at the Sverdrup
velocity (see the nondimensionalization used in the pre-
vious section).

Figure 2 shows the instantaneous streamfunction and
potential-vorticity fields at time 90 from run 1. Lapla-
cian mixing of momentum with a Munk scale of 0.04
was used in conjunction with free-slip boundary con-
ditions. The figure demonstrates the vigorous eddying
nature of the flow. The strong distortion of the potential
vorticity contours is indicative of an active potential
enstrophy cascade in the domain interior, a point we
shall return to later.

Figure 3 shows contour plots of the time-averaged
streamfunction and potential vorticity fields for the same
run. The averaging excluded the first 20 units of time.
This ensures that the averaging is carried out over a
period in which the flow field is statistically steady, as
can be verified by reference to Fig. 4 where the time
series of the (kinetic) energy and potential enstrophy,
normalized by their respective maxima, can be found.
The time-mean circulation in Fig. 3 shows a four-gyre
structure. The two inner gyres circulate in the same
direction as conventional wind-driven gyres, while the
two outer gyres at the northern and southern ends of
the basin circulate in the opposite direction.

To test the sensitivity to the choice of boundary con-
dition, run 1 was repeated using the superslip boundary
condition (7) (run 2). The instantaneous and time-av-
eraged streamfunction and potential vorticity fields for
run 2 are contoured in Fig. 5. (Whenever the instanta-
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FIG. 3. The time-averaged, nondimensional streamfunction (left panel) and potential vorticity
(right panel) in eddy-resolving run 1. The stream-function contour interval (SFCI) is 0.15, and
the potential-vorticity contour interval (PVCI) is 0.10.

FIG. 4. Time series of energy (upper) and potential enstrophy (lower) normalized by their
respective maxima. Statistical stationarity is established by time 10. Averaging to obtain the
time-mean fields in Fig. 3 extends from time 20 to time 100.

neous fields are shown, they are at time 90.) The re-
markable similarity of the time-mean flow in this figure
to that of run 1 (Fig. 3) indicates that the four gyre time-
mean circulation is robust to the choice of either free-
slip or superslip boundary conditions. As can be seen
from Table 2 (discussed in detail later), the vorticity
balance is dominated by the wind stress curl and the
eddy flux of potential vorticity term, with the explicit

dissipation playing a less important role. For the inner
gyres, the eddy flux equilibriates the gyres, whereas for
the outer gyres the eddy flux drives the gyres. The strong
distortion of the mean potential vorticity field from lines
of latitude indicates the strongly inertial character of the
inner gyres. The tendency for potential vorticity to ho-
mogenise is evident, especially in the region occupied
by the outer gyres.
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FIG. 5. Contour plots of the instantaneous (top panels) and time-averaged (bottom panels) stream-
function (left panels) and potential vorticity (right panels) for run 2. The only difference between
the runs 1 and 2 is in the boundary conditions (free slip vs superslip). Instantaneous fields: SFCI is
0.30; PVCI is 0.20. Time-mean fields: SFCI is 0.15; PVCI is 0.10 (same as in Fig. 3).

TABLE 2. The mean vorticity balance for run 2 (in arbitrary units). The sum of the terms, which should be exactly zero, measures the
error involved in computing the integrals from the model output (about 1% with respect to the dominant term).

Gyre J(c9, q9) F D 2J(c9, q9) 1 F 2 D

Southern outer
Subtropical wind-driven
Subpolar wind-driven
Northern outer

2444.74
21092.50

1157.18
380.06

2434.22
21141.88

1211.98
364.12

14.18
236.31

41.00
218.87

23.65
213.06

13.80
2.93
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Rhines and Holland (1979) have noted the importance
of the cascade to small scales and subsequent dissipation
of potential enstrophy for determining how potential
vorticity is mixed by the eddies and the associated eddy/
mean flow interaction. We noted earlier that there is an
active potential enstrophy cascade in the domain inte-
rior, suggesting that the cascade and the dissipation of
potential enstrophy, and hence the mixing of potential
vorticity by the eddies, is not strongly influenced by the
viscous boundary layers in our experiments but rather
takes place primarily in the interior of the domain. Since
the four-gyre structure is a consequence of the eddy flux
of potential vorticity, it is likely that the four-gyre struc-
ture occurs even in cases when the Munk layer is not
resolved by the model grid, as we have indeed dem-
onstrated in other model runs. The robustness of the
four-gyre structure is also supported by Fig. 7 in Scott
and Straub (1998). This figure shows a four-gyre struc-
ture in the time-averaged field from an eddy-resolving
experiment with very high resolution (the Munk layer
is resolved by five grid points in their experiment). Scott
and Straub (1998) therefore provide independent evi-
dence of the four-gyre structure, although they make no
comment on the presence of four gyres in their text. On
the issue of model resolution, we note that Dukowicz
and Greatbatch (1999) describe geostrophic turbulence
experiments which use a special form of numerical side
boundary condition chosen to ensure that both energy
and potential enstrophy are dissipated on the numerical
grid whatever the value of the viscosity. The numerical
side boundary condition allows viscosity to be reduced
to zero on a fixed grid without the need to resolve the
Munk layer. In Dukowicz and Greatbatch (1999) the
dissipation of potential enstrophy occurs in the interior
of the domain and is entirely independent of the bound-
ary layers.

Next, we address the issue of sensitivity to the form
of the dissipation used. Run 3 uses biharmonic mixing
of momentum with free-slip boundary conditions for
the same Rossby number (0.01) and Munk scale (0.04)
as in runs 1 and 2. Once again (Fig. 6) we see a four-
gyre structure in the time mean fields and evidence of
an active cascade in potential enstrophy in the domain
interior.

So far, all cases have used a Rossby number 0.01.
Next, we consider a Rossby number of 0.0016 (the as-
sociated Rhines scale is 0.04). We have done several
runs with both Laplacian and biharmonic mixing at this
Rossby number, all of which show the four gyre struc-
ture as before. As an example, we show run 4 in Table
1. This has biharmonic mixing with an associated Munk
scale of 0.02 and uses the highest resolution (grid spac-
ing 0.01 on a 101 3 201 grid) of any of our model runs.
The model results show the same four gyre structure
(Fig. 7) and also large regions of nearly uniform po-
tential vorticity, especially in the region occupied by
the outer gyres. The tendency for potential vorticity to
homogenise was noted previously and can be seen in

the other model experiments. Potential vorticity ho-
mogenization has also been noted in unforced geo-
strophic turbulence experiments (Cummins 1992; Wang
and Vallis 1994; Dukowicz and Greatbatch 1999). Re-
gions of uniform potential vorticity are associated with
the emergence of the two separated gyres extending
from the northern and southern boundaries of the model
domain. These gyres correspond to the outer gyres found
in our forced model experiments. An analysis of the
gyres in terms of their meridional extent and the strength
of the gyre circulation has been given by Cummins
(1992) and Dukowicz and Greatbatch (1999).

Finally, in Fig. 8 the conventional double gyre struc-
ture is shown to occur at a higher value of Laplacian
dissipation (run 6) for which the Munk and Rhines
scales are comparable with each other. It should be noted
that the flow in this case is turbulent (as can be seen in
the plot of the instantaneous fields), although the eddies
are not strong enough to drive outer gyres.

We now discuss the vorticity balance governing the
four gyres. To do this, we first write c 5 c 1 c9 and
q 5 q 1 q9, where overbar denotes time-averaged quan-
tities and prime departures from the time average. In a
statistically steady state, time averaging of (1) then gives

J(c, q) 5 2J(c9, q9) 1 F 2 D. (11)

Integrating (11) over the area enclosed by a closed c
streamline, the J(c , q) term drops out [this is the area
integral version of the integral balance introduced by
Niiler (1966) and which appears in Eq. (4.4) of Griffa
and Salmon (1989)]. We are then left with a balance
between the wind stress curl forcing F , the dissipation
2D and the divergence of the eddy flux of potential
vorticity 2J(c9, q9) . These terms have been computed
for each of the four gyres in Fig. 5 (run 2) using the c
5 0 contour to bound the region over which the inte-
gration is carried out. It is clear from the table, that the
dominant balance is between the wind stress curl forcing
and the eddy flux of potential vorticity term, with the
explicit dissipation playing a negligible role. In the case
of the two inner gyres, these circulate in the same sense
as the wind stress curl and so can be considered as being
driven by the wind forcing and equilibriated by the eddy
flux of potential vorticity. The two outer gyres on the
other hand circulate in the opposite sense to the wind
stress forcing and are driven instead by the eddy forcing.
Clearly, the stronger the eddy mixing compared with
the wind forcing, the more homogeneous will be the
potential vorticity within the individual gyres.

When comparing our results with those of Griffa and
Salmon (1989) it is extremely important to realize that
we are working in a regime in which the dissipation is
sufficiently weak that the flow is highly turbulent and
the eddy flux of potential vorticity dominates the vor-
ticity balance over the explicit dissipation. Griffa and
Salmon (1989) use Eq. (4.4) in their paper to argue that
Fofonoff-type gyres will be inhibited in the barotropic
vorticity equation under the conventional double-gyre
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FIG. 6. Instantaneous (top panels) and time-averaged (bottom panels) streamfunction (left panels)
and potential vorticity (right panels) fields for run 3. Rossby number is 0.01, as in the previous
runs, but a biharmonic mixing of momentum with an associated Munk scale of 0.04 is used here.
Instantaneous fields: SFCI is 0.30; PVCI is 0.20. Time-mean fields: SFCI is 0.15; PVCI is 0.10
(same as in Fig. 3).

wind forcing we use in our experiments. They note that
Fofonoff-type gyres circulate in the opposite sense to
the wind stress curl (as do the outer gyres in our model
solutions) and so, for the case of a simple Rayleigh
friction damping, the damping cannot balance the wind
stress forcing in equilibrium. In our experiments, equi-
librium is possible because the eddy flux of potential
vorticity is large enough to close the balance. Since the

explicit dissipation plays only a minor role in our ex-
periments, the exact nature of the explicit dissipation is
not important for our results. For example, it is not
important that we have used lateral mixing, whereas
Griffa and Salmon’s argument uses Rayleigh friction as
the damping. As it happens, we have also done some
model runs (not shown), again in a highly turbulent
regime, but using Rayleigh friction to provide the dis-



1468 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 7. Instantaneous (top panels) and time-averaged (bottom panels) streamfunction (left panels)
and potential vorticity (right panels) fields for run 4. Instantaneous fields: SFCI is 0.80; PVCI is
0.15. Time-mean fields: SFCI is 0.30; PVCI is 0.10.

sipation. These experiments again show a four-gyre
structure in the time mean fields. Once again, it is the
eddy flux of potential vorticity that dominates the vor-
ticity balance over the explicit dissipation.

4. The parameterized model

In our experiments, explicit dissipation plays a neg-
ligible role in the vorticity balance of the time-averaged
state, encouraging us to try and mimic the time mean

fields in the eddy resolving model using a parameterized
model in which explicit dissipation is excluded, but in-
cluding a simple parameterization of the eddy flux of
potential vorticity. The vorticity balance inside any
closed streamline is then, by design, between the wind
stress curl forcing and the eddy flux of potential vorticity
term, consistent with the dominant balance in Table 2.
The model integrates (1) except that

D 5 = · (k=q) (12)
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FIG. 8. Instantaneous (top panels) and time-averaged (bottom panels) streamfunction (left panels)
and potential vorticity (right panels) fields for run 5. Since the Munk scale and inertial boundary
layer scales are comparable, a conventional double-gyre results in the time-mean fields. Instan-
taneous fields: SFCI is 0.40; PVCI is 0.10. Time-mean fields: SFCI is 0.15; PVCI is 0.10 (same
as in Fig. 3).

and along the boundary

]q
k 5 0. (13)

]n

The model variables are to be interpreted as time av-
erages. Equation (12) parameterizes the divergent part
of the eddy flux of potential vorticity as a down-gradient
transfer, and the boundary condition (13) imposes a con-

dition of no flux of potential vorticity through the
boundary of the model domain (such a boundary con-
dition is reasonable because the no normal flow bound-
ary condition in the eddy-resolving experiments ensures
that the normal component of u9q9 is zero along the
boundary). To run the model with this form of boundary
condition, it is necessary to update q on the boundary
of the model domain, as with the superslip boundary
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FIG. 9. The steady state fields from the parameterized model. Rossby number is 0.0016 and the
dissipative term, a Laplacian mixing of potential vorticity (PV), arises from a parameterization
of the divergence of the eddy pv-fluxes as a downgradient transfer of mean PV. The associated
Munk scale is 0.08 and a no-normal-flux-of-PV boundary condition is used. The grid spacing is
0.04. SFCI is 0.15; PVCI is 0.10 (same as in Fig. 3).

condition used earlier. We also finite difference the
q-mixing term (12) in such a way that when F 5 0, the
area integral of q over the model domain is conserved.

Figure 9 shows the steady state contours of stream-
function and potential vorticity obtained using the pa-
rameterized model. For simplicity, a spatially uniform
k is used with value corresponding to a Munk layer of
width 0.08 (twice the grid spacing which is 0.04 in the
parameterized model). The Rossby number for the ex-
periment is 0.0016. The same four-gyre structure is
found as in the time-mean circulation of the eddy-re-
solving experiments. In the parameterized model, the
outer gyres are clearly associated with the regions of
homogenised potential vorticity occupying the northern
and southern quarters of the model domain. The cor-
respondence between the presence of the outer gyres
and the tendency for potential vorticity to homogenize
was noted in the eddy-resolving experiments (e.g., com-
pare Fig. 9 with the time-averaged fields in Fig. 7).

We can show that the four gyre structure is dependent
on the boundary condition (13) by carrying out a model
run identical to that used to produce Fig. 9 except that
(13) is replaced by the superslip boundary condition in
which the normal derivative of relative vorticity z, rather
than the normal derivative of the potential vorticity q
5 z 1 by, is set to zero on the boundary. The resulting
steady state shows only the conventional two-gyre struc-
ture. A similar result is obtained when a free-slip bound-
ary condition is used. We have also carried out model
runs in which k is given by

k 5 k0 sin(px/L) cos(py/2L). (14)

With this choice for k, the boundary condition (13) is
satisfied automatically without the need to apply a con-
dition on the gradient of q or z. Again we see a four-
gyre structure. These results emphasise the important
role of the model boundaries in blocking the eddy flux
of potential vorticity. The eddies can then erode the
planetary vorticity gradient away from the northern and
southern boundaries, leading to the emergence of the
outer gyres.

5. Summary and discussion

We have seen that numerical experiments using a bar-
otropic vorticity equation model in a highly turbulent
regime, and driven by symmetric double gyre wind forc-
ing, can produce a four-gyre structure in the time mean
field, instead of the conventional two gyres. The outer
gyres are driven by the eddy flux of potential vorticity
and are found in experiments using either free-slip or
superslip side boundary conditions, harmonic or bihar-
monic mixing of momentum and at two very different
Rossby numbers. We have also found the four-gyre
structure in eddy-resolving experiments that model the
dissipation using a Rayleigh friction term (although we
did not include results from these cases). An analysis
of the vorticity budget for the four gyres shows that the
explicit dissipation plays only a very minor role, the
dominant balance being between the eddy flux of po-
tential vorticity term and the wind stress curl. This en-
couraged us to carry out experiments using a parame-
terized model, which excludes the explicit dissipation,
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but includes the divergent part of the eddy flux of po-
tential vorticity as a downgradient transfer. A condition
of no normal flux of potential vorticity is applied along
the boundaries of the parameterized model. The param-
eterized model exhibits the same four-gyre structure.
Experimentation with the parameterized model shows
that in contrast to the eddy-resolving runs, the four-gyre
structure is strongly dependent on the no normal flux
condition applied to potential vorticity along the bound-
ary. In particular, the four gyre structure is not found
in the parameterized model when the superslip boundary
condition of zero normal gradient in relative vorticity,
or the conventional free slip boundary condition, is ap-
plied instead. This result emphasises that eddies mix
potential vorticity and that it is the eddy flux of potential
vorticity away from the northern and southern bound-
aries (through which the flux is zero) that is responsible
for the emergence of the outer gyres.

One final comment, the outer gyres we are discussing
here are very different from the inertial gyres associated
with the inertial recirculation regions of ocean gyres
(e.g., Niiler 1966; Marshall and Nurser 1986; Great-
batch 1987). The inertial recirculation gyres are asso-
ciated with inertial gyres that circulate in the same sense
as the wind forcing, not the opposite sense as do our
outer gyres. Rather, the outer gyres in our experiments
are more akin to the basin-scale, eddy-driven circulation
envisaged by Holloway (1992), with the caviate that
whereas Holloway’s theory relies on statistical mechan-
ics, the gyres we have found are associated with the
tendency of eddies to erode the planetary vorticity gra-
dient and homogenise potential vorticity (a detailed dis-
cussion of the connection with Holloway’s theory can
be found in Dukowicz and Greatbatch 1999).
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