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Enhancement of the inverse-cascade of energy in the two-dimensional
Lagrangian-averaged Navier–Stokes equations
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The recently derived Lagrangian-averaged Navier–Stokes equations model the large-scale flow of
the Navier–Stokes fluid at spatial scales larger than somea priori fixed a.0, while coarse-graining
the behavior of the small scales. In this communication, we numerically study the behavior of the
two-dimensional~2D! isotropic version of this model, also known as thea model. The inviscid
dynamics of this model exactly coincide with the vortex blob algorithm for a certain choice of
smoothing kernel, as well as the equations of an inviscid second-grade non-Newtonian fluid. While
previous studies of this system in 3D have noted the suppression of nonlinear interaction between
modes smaller thana, we show that the modification of the nonlinear advection term also acts to
enhance the inverse-cascade of energy in 2D turbulence and thereby affects scales of motion larger
than a as well. This, we note,~a! may preclude astraightforwarduse of the model as a subgrid
model in coarsely resolved 2D computations,~b! is reminiscent of the drag-reduction that occurs in
a turbulent flow when a dilute polymer is added, and~c! can be qualitatively understood in terms of
known dimensional arguments. ©2001 American Institute of Physics.@DOI: 10.1063/1.1359764#
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The two-dimensional~2D! incompressible, Euler equa
tions are

] tv1“•~uv!50, “"u50, v~ t50!5v0 , ~1!

wherev5“3u is the vorticity,u is the spatial velocity vec-
tor field, t denotes time, and all the dependent variables
pend ont and x5(x1 ,x2), the Cartesian coordinates in th
plane. An inversion of the vorticity-velocity relation yield
u5*K (x,y)v(y) dy, whereK5“

'G, G is the solution of
2DG5d, and“'5(2]x2

,]x1
). For fluid motion over the

entire plane,K (x,y)5(2p)21
“

' log ux2yu. Let ht denote
the flow ofut5u(t,•), so thatdht /dt5ut„h(t)…. Becauseut

is divergence-free, the flow mapht is an area-preserving
transformation for eacht. It follows that

dht

dt
5E K „ht~x!,ht~y!…v„ht~y!… dy

5E K „ht~x!,ht~y!…v0~y! dy, ~2!

where the last equality is a consequence of the pointw
conservation of vorticity along Lagrangian trajectorie
v„ht(x)…5v0(x). Thus, the initial vorticity field completely
determines the fluid motion. Choosing the initial vorticity
be a sum ofN point vorticesd i positioned at the pointsxi in
the plane with circulationsG i , v05( i 51

N G id i , Eq. ~2! pro-
duces the classical point-vortex approximation to~1!. This
approximation is known to be highly unstable, as finite-tim
collapse of vortex centers may occur.1

Chorin’s vortex blob method2 alleviates the instability of
the point-vortex scheme by smoothing each delta functiod
with a vortex blobx, a function that decays at infinity, an
1521070-6631/2001/13(5)/1528/4/$18.00
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whose mass is mostly supported in a disc of diametera.
Thus, instead of using the integral kernelK ~x,y!, one uses
the smoother kernelKa5“

'Ga whereGa is the solution of
2DGa5x. The vortex-blob method then evolves the poin
vortex initial data, which we shall now callq0 , by the ordi-
nary differential equation

dh t
a

dt
5E Ka

„ht
a~x!,ht

a~y!…q0~y! dy. ~3!

Henceforth, to keep the notation concise, we will drop t
superscripta when there is no ambiguity.

When the vortex-blobx is the modified Bessel function
of the second kindK0 , it is the fundamental solution of the
operator (12a2D) in the plane, and the vorticityq is related
to the smoothed velocity vector fieldu by q5(1
2a2D)“Ãu. Thus, Chorin’s vortex method for this choic
of smoothing is given by the partial differential equation

] tq1“"~uq!50, “"u50, q~ t50!5q0 . ~4!

The system of equations~4! is also known as the 2D
isotropic averaged Euler equations, and are derived by a
aging over Lagrangian fluctuations of ordera about the mac-
roscopic flow field.3–5 When the constanta.0 is interpreted
as a material parameter which measures the elastic resp
of the fluid due to polymerization instead of as a spa
length scale, then~4! are also exactly the equations that go
ern the inviscid flow of a second-grade non-Newtoni
fluid.6 According to Noll’s theory of simple materials,~4! are
obtained from the unique constitutive law that satisfies m
terial frame-indifference and observer objectivity. Cons
quently, the vortex method with the Bessel functionK0
8 © 2001 American Institute of Physics
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smoothing naturally inherits these characteristics.7 Further-
more, for any initial condition and fixed time interval, on
may choose the number of modeskmax large enough so as t
be arbitrarily close to the exact solution of the averaged
ler equations without the addition of viscosity. For such lar
kmax, and in simulations of unforced decaying turbulen
the averaged Euler equations exhibit a fundamental fea
of 2D turbulence: a sharp decrease in enstrophyZ during the
first few large eddy turnover times. This is extremely inte
esting, because, while it is necessary to add viscosity to
Euler equations to obtain similar behavior, the averaged
ler equations can reproduce this behavior while exactly c
serving an energy. We shall report further on such invis
simulations in future publications.

We find the connections between averaging Euler eq
tions over Lagrangian fluctuations, a constitutive theory
polymeric fluids, and a classical numerical algorithm to
quite intriguing and suspect that these equations will be
portant from a modeling standpoint. However, most previo
studies of the averaged Euler equations have been of a m
ematical nature, and we are aware of only a few cases w
this system has been used as a~dynamic! modeling tool:
Chenet al.8 used a viscous version of the 3D averaged Eu
equations to simulate isotropic turbulence and found t
they could reproduce large-scale features without fully
solving the flow. Nadiga9 considered the inviscid 2D form o
the averaged Euler equations and demonstrated that for
ably chosen values ofa, the large-scalespectral-scalingsof
the Euler equations could be preserved while achievin
faster spectral decay at the smaller scales. Finally, Na
and Margolin10 used an extension of the 2D averaged Eu
equations in a geophysical context to model the effects
mesoscale eddies on mean flow.

Before we go on to consider numerical simulation of t
Lagrangian-averaged Euler system, we wish to point out
there is also a beautiful geometric structure to~4! which
follows the framework developed by Arnold11 and Ebin and
Marsden.12 While the details of this particular issue are f
outside the scope of this article, it is, nevertheless, wo
while to state the result. Arnold showed that the appropr
configuration space for a perfect incompressible fluid is
group of all area-preserving diffeomorphisms of the flu
container, and that solutions of the Euler equations are g
desics on this group with respect to a certain kinetic ene
metric, characterized by the inner-product*(u•v) dx for two
divergence-free vector fieldsu and v. The system~4! also
has this geometric property, but now the metric is inste
characterized by *„u•v12a2Def(u)•Def(v)… dx, where
Def~u! is the rate of deformation tensor„“u1(“u)T

…/2.13

Equations~4! thus preserve the Hamiltonian structure of t
Euler equations. In particular, vorticity remains pointwi
conserved by the smooth Lagrangian flowht

a so that
q„ht

a(x)…5q0(x), the vorticity momenta*qp dx are con-
served, and so the Kelvin circulation theorem remains inta4

as well.
Since in each of the three different scenarios

Lagrangian-averaged Euler, vortex-blob method, and in
cid second-grade fluid—the essential modification of
original equations is a change of the advective nonlinea
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of fluid dynamics, we will now consider forced-dissipativ
simulations of the system~4! to demonstrate the effect o
such an inviscid modification. If we use a vorticity-strea
function formulation, the evolution of both the Euler an
averaged Euler systems can be represented by

]v

]t
1~12a2D!21J@c,~12a2D!v#5F1D, ~5!

wherev5Dc, J is the Jacobian,F is the forcing, andD is the
dissipation.~The Euler system corresponds toa50.! Our
numerical scheme consists of a fully dealiased pseudos
tral spatial discretization and a~nominally! fifth-order, adap-
tive timestep, embedded Runge–Kutta Cash–Karp temp
discretization of~5! ~see Ref. 9 for details!. With such a
scheme, among the infinity of inviscid (F5D50) con-
served quantities for~5!, the only two conservation proper
ties that survive are those for the kinetic energyEH1 and
enstrophyZH2 given, respectively, by

EH15
1

2 E ~ uuu21a2u“uu2! dx~5iuiH1
2

!,

~6!

ZH25
1

2 E @~12a2D!v#2 dx~5iviH2
2

!.

In the forced-dissipative runs to be considered, the fo
ing F is achieved by keeping the amplitudes of modes w
wave numbers in the small wave number band 10<k
,10.001 constant in time. The dissipation,D, is a combina-
tion of a fourth-order hyperviscous operator and a large-sc
friction term: D5dc2(2nD)4v, as has been used in nu
merous previous studies of 2D turbulence. The form a
value of the forcing and dissipation are held exactly the sa
for all the runs to be presented, irrespective of the resolu
and the value ofa.

On the one hand, it could be argued that since the ene
and enstrophy that are conserved~in an unforced-inviscid
setting! are EH1 and ZH2, respectively, it is their dynamics
which is of primary importance. On the other, it could b
argued that in the context of~5!, the interest in small scales i
only in so much as it affects the larger scales and to t
extenta has no primary significance and that it is really t
large-scale components of energy and enstrophy in~6! that
are of primary interest. While both these points of view a
reasonable, in this brief communication, we proceed with
latter and concern ourselves with the dynamics of the us
kinetic energy and usual enstrophy as given by

E5
1

2 E uuu2 dx, Z5
1

2 E v2 dx. ~7!

Figure 1 shows the evolution of the kinetic energyE
with time for four different values ofka . For these compu-
tations, 512 physical grid points were used in each direct
resulting in, after accounting for dealiasing, a maximum, c
cularly symmetric wave number,kmax, of 170. ~Wave num-
berk, corresponding to a wavelengthl, was defined as 2p/l,
so that akmin of unity corresponded to the length of the bo
of 2p.! The four runs correspond toka of ` ~dissipative
Euler!, 42, 21, and 14. This figure shows that for identic
ct to AIP copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1530 Phys. Fluids, Vol. 13, No. 5, May 2001 B. T. Nadiga and S. Shkoller
forcing and dissipation, the tendency with increasinga
~equivalently decreasingka) is to achieve an overall balanc
which makes the flow less viscous.

While the kinetic energy of the runs with differenta
shows a definite trend~increasing with increasinga!, such is
not the case with the enstrophy shown for the same f
cases in the inset of Fig. 1. Here interestingly, all the ru
with nonzeroa seem to display approximately the same le
of enstrophy which is lower than fora50. This indicates

~i! that the small-scale behavior is quite different wh
a50 and whena is nonzero~as noted in previous
studies4,8,9!, but that this difference is not sensitive
dependent on the value ofa for the interesting range
of values ofa, and

~ii ! that the more significant change witha is the behavior
of the large scales.

Therefore, to further examine the nature of th
~reduced-viscous! behavior of the large scales, we exami
the energy-wave-number spectra in Fig. 2. Here, the ave
of the one-dimensional energy spectrumE(k) between times
5 and 20 is plotted against the scalar wave numberk. Figure
2 shows that the reduced-viscous behavior for increasinga is
achieved by systematically increasing the energy in mo
larger in scale than the forcing scale and decreasing the
ergy in modes smaller in scale compared to the forcing sc

The larger energy content in the larger scales implies
enhancement of the inverse cascade of energy of 2D tu
lence by the nonlinear-dispersive modification of the adv
tive nonlinearity whena.0 in ~5!. So also, the decrease
energy content in the smaller scales is attributable to
same nonlinear-dispersive modification. In the following,
give a simple dimensional argument to explain the obser
behavior. For this, consider the governing equations in
form ~4!. In close analogy with the classical picture for th

FIG. 1. The evolution of kinetic energyE with time for ka5` ~solid line!,
ka542 ~dotted line!, ka521 ~dashed line!, andka514 ~dotted-dashed line!.
An increase ina, for identical forcing and dissipation, results in an over
reduced viscous behavior. In the inset is shown the evolution of enstropZ
for the same time interval and for the same four values ofa and with the
same line types as for kinetic energy. While there is a significant differe
between zero and nonzeroa cases, the dependence on the actual value oa
itself is rather weak.
Downloaded 15 Apr 2001 to 169.237.99.131. Redistribution subje
r
s
l

ge

s
n-

le.
n
u-
-

e

d
e

inertial ranges of 2D dissipative Euler equations,14 a
Kolmogorov-like cascade picture for~4! shows that the iner-
tial range consists of two subranges, the enstrophy cas
subrange where there is a down-scale cascade of theZH2

enstrophy defined in~6!, and the energy cascade subran
where there is an up-scale cascade of theEH1 energy defined
in ~6!. EH1 andZH2 are the relevant energy and enstroph
since these are the ones which are conserved in an inv
and unforced case.

If we assume that the wave numberka only appears in
the Helmholtz operator, as it does in the governing eq
tions, then we have the following.

~i! In the enstrophy cascade subrange,

E~k!;bH2
a kb, ~8!

wherebH2 is the rate of dissipation ofZH2 enstrophy, anda
andb are exponents to be determined by dimensional an
sis. If L andT are characteristic length and time scales in
enstrophy cascade subrange, the dimensions of the va
quantities in~8! imply

L3T225T23a~11a2L22!2aL2b,

from which a5 2
3. However, even in the enstrophy casca

subrange, the value ofb depends on the the ratioa/L. For
a!L, of course,b523, and the classical14 E(k);k23 is
recovered; whena@L, E(k);k217/3. Finally, when a is
comparable toL, it is easy to see thatE(k) decays faster than
for Euler, but slower thank217/3 ~as may be seen in Fig. 2!.

~ii ! In the energy cascade subrange,

E~k!;eH1
a kb, ~9!

whereeH1 is the rate of dissipation ofEH1 energy, anda and
b are exponents to be determined by dimensional analysi
L andT are characteristic length and time scales, now, in
energy cascade subrange, the dimensions of the var
quantities in~9! imply

L3T225T23a~11a2L22!aL2a2b,

from which a5 2
3. Again, even in the energy cascade su

range, the value ofb depends on the the ratioa/L. For a
!L, of course,b525/3, and the classical14 E(k);k25/3 is
recovered; whena@L, E(k);k23. Whena is comparable
to L, it is easy to see that the inverse cascade of energ
enhanced, that is,E(k) increases with decreasingk faster
thank25/3 ~Euler! but slower thank23. While the effects of
the enhancement of the inverse cascade of energy is cle
Fig. 2, we defer the verification of the asymptotic values
the exponentb to later studies when we can afford muc
larger simulations with a good dynamic range in each of
inertial subranges.

The steeper falloff of the energy spectrum withk in the
enstrophy cascade range of wave numbers whena.0, com-
pared to Euler, may, at first, suggest that a coarser resolu
may be sufficient to resolve the flow whena.0 ~for the
same forcing and dissipation!. However, this is not the case
as should be clear from Fig. 3. In this figure, the spectra
the cases previously discussed is replotted together with
corresponding spectra when the resolution is reduced b
quarter (kmax5128) and a half (kmax585). ~The spectra for

e
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the different values ofa are offset to improve clarity.! The
degree of nonresolution of the flow due to the reduced re
lution is indicated by the deviation of that spectrum from th
for the fully resolved case. With a 25% reduction in reso
tion, the flows are almost resolved for all values ofa, while
with a 50% reduction, the flows are not fully resolved an
more. Importantly, the degree of nonresolution is indep
dent ofa to the lowest order.

Besides their use in describing mean motion, the~La-
grangian! averaged Euler equations have arisen indep

FIG. 2. Stationary wave-number-energy spectra~log-log scale! for the
forced-dissipative simulations of the averaged Euler equations with zero
nonzeroa. ka5` ~solid line!, ka542 ~dotted line!, ka521 ~dashed line!,
and ka514 ~dotted-dashed line!. The inset shows the same plot with
linear-linear scale for the first ten wave numbers. The enhanced inve
cascade of energy and the suppressed energy level at smaller scale
increasinga is evident.

FIG. 3. The spectra for the four cases in Fig. 2 are replotted along with
spectra for the same four cases with resolution reduced by 25% and 50
each direction. The sets of spectra for eacha are offset by a decade each
improve clarity. The degree of nonresolution of the flow with the reduc
resolution is indicated by the difference between that spectrum and
spectrum for the fully resolved case. With a 25% reduction in resolution,
flows are almost resolved, while with a 50% reduction, the flows are
fully resolved anymore. The degree of nonresolution is independent ofa to
the lowest order.
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dently in at least two other contexts—second grade po
meric fluids and vortex blob methods. In this Brie
Communication, we make two observations that are likely
be of fundamental importance in understanding the releva
of these models in describing more realistic flows: While
has been previously noted that with these equations, non
ear interactions at scales small compared toa are suppressed
we have shown here that the modification of the nonlin
advection term in these equations also leads to an enha
ment of the inverse cascade of energy in two dimensions
characteristic feature of 2D turbulence. This in turn impli
~1! an overall reduced-viscous behavior and~2! a significant
modification of the dynamics of scales larger thana, both
reminiscent of the phenomenon of drag reduction in a tur
lent flow when a dilute polymer is added~e.g., see Ref. 15
and references therein!. Furthermore, we point out that th
limiting of the energy spectrum at small scales due toa does
not, in itself, allow the~2D! flow to be resolved on a coarse
grid and, therefore, precludes a straightforward use of
a-model as a subgrid model in coarsely resolved 2D com
tations.

The latter notwithstanding, we remark that the averag
Euler equations are useful in better understanding the limi
inviscid fluid flow, since the averaged Euler equations w
viscosity, unlike the Euler equations, converge regularly
the solutions of the inviscid system.13 That is, for an arbitrary
but fixed time interval, we can choosea small enough so tha
the solution of the averaged Euler equations are uniform
within any a priori chosen error of the Euler equations7 and
then consider the zero viscosity limit of the viscous, av
aged Euler equations.
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