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Given its importance in parametrizing eddies, we consider the orientation of eddy flux of
potential vorticity (PV) in geostrophic turbulence. We take two different points of view,
a classical ensemble- or time-average point of view and a second scale decomposition
point of view. A net alignment of the eddy flux of PV with the appropriate mean gradient
or the large-scale gradient of PV is required. However, we find this alignment to be very
weak. A key finding of our study is that in the scale decomposition approach, there is a
strong correlation between the eddy flux and a nonlinear combination of resolved
gradients. This strong correlation is absent in the classical decomposition. This finding
points to a new model to parametrize the effects of eddies in global ocean circulation.
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1. Introduction

Ocean circulation is characterized by interactions over a vast range of spatial and
temporal scales. Consequently, direct numerical simulation (DNS) of ocean
circulation on climate time scales is unlikely in the foreseeable future. The
problem of modelling ocean circulation is then one of how best to abstract
important physics represented in the full governing equations at a lower cost.
Note that while the Navier–Stokes equations are the governing equations for
ocean circulation, the previous statement holds for further approximations of the
system such as the primitive equations, the quasi-geostrophic (QG) equations
and others.

One choice is to average the system over time or ensembles. Such an averaging
is called Reynolds averaging (RA) in classical turbulence (Pope 2000). A model
based on RA aims to solve for the mean aspects of the flow. Thus, while
a model based on RA is capable of capturing many important aspects of
a turbulent flow, it is unable to accurately predict spatio-temporal characteristics
of the flow. One way to improve on this is to adopt unsteady RA. In this case,
averages are considered over time intervals that are large with respect to the
time scale of turbulence, but small compared with the variability time scales of
interest. Clearly, unsteady RA-based models can be successful for flows with
distinct separation of turbulent and variability time scales.
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The implicit assumption of statistical stationarity in RA limits the
applicability of that approach to modelling ocean circulation since ocean
circulation is dominated by extremely rich variability on a wide range of time
scales: the lifetime of mesoscale eddies are of the order of a few months, massive
basin-wide changes like those due to El Niño occur on the annual to interannual
time scale, the paths of important currents like the Kuroshio current change on
the decadal time scale, abrupt changes in the thermohaline circulation (THC)
with drastic implications for climate, as evidenced in palaeoclimate records, take
place on the decadal to centennial time scales, whereas thermodynamic
equilibration and gradual changes of the THC occur on the millennial time
scale. The unsteady RA approach would, therefore, seem more applicable.
Nevertheless, its applicability is limited to oceanic regimes where there is a
separation between turbulence time scales and the variability time scales of
interest. For example, the unsteady RA approach would be appropriate to
parametrize the effects of baroclinic instability and mesoscale eddies, as through
Gent–McWilliams parametrization, in simulations that do not resolve the (first)
Rossby radius of deformation in coarse-resolution studies of THC variability on
the centennial and millennial time scales. However, the unsteady RA approach
would be inappropriate to parametrize the effects of subgrid scales in the
mesoscale eddy-permitting and eddy-resolving simulations that are now
becoming more commonplace.

State-of-the-art ocean general circulation models (OGCMs) are RA based.
(For brevity, we will use RA to refer to unsteady RA as well, when there is no
ambiguity.) In fact, turbulent fluxes are typically modelled using turbulent
diffusivity/viscosity hypotheses. This includes the Gent–McWilliams parame-
trization. The parametrization of adiabatic flattening of isopycnals by baroclinic
instability, as described by Gent & McWilliams (1990), is achieved effectively by
turbulent diffusion of layer thickness (buoyancy), after noting that the bolus
(advective) transport of scalars results from isopycnal thickness averaging of
velocity. Turbulent diffusion of potential vorticity (PV) in the interior
accompanied by buoyancy diffusion in surface and bottom layers has also been
proposed (Treguier et al. 1997) as an alternative to thickness diffusion. As
discussed above, this is justifiable where there is a reasonable separation of scales
as in centennial time-scale climate change studies. However, with increasing
computational resources, the same turbulent viscosity/diffusivity-based RA
approaches are being used in mesoscale eddy-permitting and eddy-resolving
simulations on the shorter annual to decadal time scales; settings where a
separation of time scales is more difficult to justify.

In classical turbulence, the computational cost of DNS of large Reynolds
number turbulent flows increases as the cube of the Reynolds number (Pope
2000) and is therefore prohibitive. Further, RA-based approaches have failed to
provide detailed local spatio-temporal flow characteristics in a predictive
physics-based fashion. On the other hand, it is almost always the case that in
fully resolved computations, a disproportionately high fraction of the computa-
tional effort is expended on the smaller scales whereas energy is predominantly
contained in the larger scales (Pope 2000; Geurts 2004). This has led to the
technique of large eddy simulations (LESs) in which the large-scale unsteady
motions that are driven by the specifics of the flow geometry and forcing and
that are not universal are computed explicitly and the smaller subgrid motions
Phil. Trans. R. Soc. A (2008)
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(that are presumably more universal) are modelled (Pope 2000; Geurts 2004).
Historically, however, LES had its origin in the modelling of geophysical flows—
Smagorinsky model (Pope 2000).

LES is a turbulence modelling approach that is intermediate between DNS-
and RA-based approaches. In a typical ocean simulation, the (time varying) eddy
flux is calculated from the time-varying mean flow gradient by the
parametrization derived from RA. As mentioned earlier, for coarse-resolution
models, this might not be a problem because time variation of the resolved scales
is (almost) absent. However, for the mesoscale eddy-permitting and eddy-resolving
simulations that are becoming increasingly commonplace, such RA-based closures
are more problematic since it involves modelling the effect of (fluctuations of) the
full range of spatial scales on the appropriate time-mean circulation that is being
resolved. On the other hand, in the LES approach, it is only the effects of the
unresolved scales on the resolved scales, which have to be modelled, and hence, for
these latter cases, LES is conceptually more appropriate as a modelling framework
than RA. In this context, we note that it is unfortunate, but not uncommon, that in
ocean modelling literature, some authors refer to Reynolds stress in the RA
approach as subgrid stress.

Given the different functions of the model in the two approaches, the structure
of these models of turbulence can be expected to be significantly different. To
date, intuition about the nature of the turbulent flux of PV in geostrophic
turbulence has been built exclusively using RA concepts. In this article, we take
the first step towards investigating the nature of the equivalent object that needs
to be modelled in an LES setting, the turbulent subgrid flux of PV. In so doing,
we find that there are distinct advantages to the LES approach as compared with
the traditional RA approach. However, we will see in §2 that it is straightforward
to implement models based on scale decomposition in ocean models since the
form of the governing equations in the two approaches is similar.

The simplest subgrid closure in LES is that of an eddy or subgrid viscosity. This
viscosity may be based on mixing length ideas or the local magnitude of strain as in
the classical Smagorinsky model (Pope 2000). Such eddy or subgrid-scale (SGS)
viscosity is designed to represent the mean damping of the resolved scales by the
unresolved scales.However, the two-waynatureof interactionacross the cut-off scale
leads to a forcing of the large scales due to their nonlinear interactionswith sub-filter-
scale eddies (Leith1990). In the frameworkofLES, the effects of suchbackscatter can
be accounted for by a stochastic subgrid model in conjunction with eddy viscosity
(e.g. Leith 1990). As we will see later, in the forward cascade of enstrophy in
geostrophic turbulence, backscatter can be large, suggesting the importance of a
stochastic component to a putative scalar eddy viscosity-based subgrid closure. On
the other hand, we will also see that the eddy flux of PV aligns well with a nonlinear
combination of resolved gradients, suggesting that the significant backscatter can be
represented rather naturally in such a nonlinear closure.

In our discussions here, it should be clear that the underlying paradigm is one
in which the effects of unresolved dynamical scales on resolved scales in large-
scale simulations of geophysical turbulent flows are represented by suitable
models. However, Majda et al. (2005) approach the problem of simulating the
atmosphere–ocean system differently and have successfully developed stochastic
mode reduction strategies, wherein they are able to describe essential large-scale
dynamics using a very small number of large-scale modes.
Phil. Trans. R. Soc. A (2008)
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In this article, we consider eddy-resolving simulations of the classical wind-
driven ocean circulation and analyse them from both RA and LES perspectives
to elucidate the differences in eddy–mean flow relations that result from different
definitions of eddy and mean in these two frameworks. In the rest of the article,
we first describe the governing equations that we work with. Next, we apply
RA and scale decomposition to the governing equations and motivate the
nonlinear gradient model. Finally, we present computational results and end with
a discussion.
2. Governing equations and decompositions

Consider the equation for the evolution of QG PV in the layered form. Using
standard notation,

vqi
vt

Cui$Vqi ZFi CDi; V$ui Z 0; ð2:1Þ

where q is the PV; u is the velocity; F is the forcing; D is the dissipation; and
subscript i refers to the layer number. The non-divergent nature of the two-
dimensional advecting geostrophic velocity allows for the introduction of a
stream function j such that uZk!Vj. In (2.1), PV, for example, for a two-layer
system, is given as

qi ZV2ji CðK1Þi f 20
g 0Hi

ðj1Kj2ÞCby;

with index iZ1 corresponding to the top layer and 2 to the bottom layer. For a
multilayer systemwithmore than two layers, the stretching term in the definition of
PV above, has contributions from both the top and bottom interfaces for layers
other than the top and bottom layers. The effect of (shallow) topography is felt only
by the bottom (Nth) layer and enters the definition of PV of the bottom layer as
another term f0/HNZb, where Zb is the bottom elevation.

For convenience, 1 may be written as

vq

vt
CV$ðuqÞZFCD; V$uZ 0: ð2:2Þ

(a ) Reynolds averaging

RA proceeds by assuming a decomposition of the form

u ZuCu 0;

where u is the ensemble or time mean. With such a decomposition, uZu and
u 0Z0. The evolution of mean PV is then given by

v�q

vt
CV$ðu�q ÞZ �F C �DKV$S; ð2:3Þ

where

SZuqKu�q Zu 0q 0 : ð2:4Þ
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Evolution of mean potential enstrophy is obtained by multiplying the above
equation with �q as

v �Z

vt
CV$ðu �Z C �qSÞZ �F �q C �D �qKT �Z ; ð2:5Þ

where �ZZ �q 2=2 and

T �Z ZKS$V�q ZKu 0q 0$V�q : ð2:6Þ
Further, since PV is an advected scalar in an inviscid and unforced setting, the
evolution equation of its variance (eddy potential enstrophy) is revealing and is
given by

v�z

vt
CV$ðuzÞZF 0q 0 CD 0q 0 CT �Z ; ð2:7Þ

where zZq 02=2 and �z is eddy potential enstrophy.
From (2.5) and (2.7), it is clear that T �Z is a transfer of potential enstrophy

from the mean to the eddies. With steady wind stress, variations of (upper) layer
thickness do not change PV forcing in quasi-geostrophy (Ff1=H 0

i , where H 0
i is

the undisturbed depth and so F 0Z0). Thus, in a statistically stationary turbulent
flow driven by steady forcing, since dissipation is negative definite, and the
second term on the left only serves to redistribute, it is clear that T �Z has to have
a net (i.e. in the domain-integrated sense) positive value.

The requirement of the net positive value for T �Z has motivated the commonly
used local downgradient closure,

u 0q 0fKV�q : ð2:8Þ
Clearly, for this approximation to be valid locally, inspection of (2.7) (assuming
statistical stationarity and steady forcing again) advection of perturbation
potential enstrophy would have to be negligible. As Rhines & Holland (1979)
point out, this is the case when the lateral scale of the mean PV field far exceeds
the displacement of fluid particles over a few eddy periods. In effect, this is a
restatement, from a Lagrangian point of view, of the requirement of a scale
separation between the turbulence that is being parametrized and the scales of
the flow that are being studied. Unfortunately, this is not the case in eddy-
permitting simulations of ocean circulation with their intense western boundary
currents and strongly curved flows. Thus, we will see later that while T �Z has a
net positive value, the above local turbulent viscosity hypothesis is generally
not valid.
(b ) Scale decomposition

In LES, the resolution of energy-containing eddies that dominate flow physics
is made computationally feasible by introducing a formal scale separation (Pope
2000). The scale separation is achieved by applying a low-pass filter to the
original equations. To this end, consider filtering at scale l so that fields u, q, etc.
can be split into large- and small-scale components as

u ZuOl Cu!l Zul Cus;
Phil. Trans. R. Soc. A (2008)
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where

uOlðxÞZulðxÞZ
ð
D
Gðr;xÞuðrÞ dr;

u!lðxÞZusðxÞZuKul ;

the filter function G is normalized so thatð
D
Gðr;xÞ dr Z 1;

and where the integrations are over the full domain D. In contrast to Reynolds
decomposition, however, generally, ullsul and usls0.

Applying such a filter to (2.2) leads to an equation for the evolution of the
large-scale component of PV that is the primary object of interest in LES:

vql
vt

CV$ðulqlÞZFl CDlKV$s; ð2:9Þ

where

sZ ðuqÞlKulql ð2:10Þ
is the turbulent sub-filter PV flux that may in turn be written in terms of the
Leonard stress, cross stress and Reynolds stress (Pope 2000) as

sZ ðulqlÞlKulql|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Leonard stress

CðulqsÞl CðusqlÞl|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
cross stress

C ðusqsÞl|fflfflffl{zfflfflffl}
Reynolds stress

: ð2:11Þ

However, while s itself is Galilean invariant, the above Leonard and cross
stresses are not Galilean invariant. Thus, when these component stresses are
considered individually, the following decomposition, originally due to Germano
(1986), is preferable:

sZ ðulqlÞlKullqll|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Leonard stress

CðulqsÞl CðusqlÞlKullqslKuslqll|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cross stress

CðusqsÞlKuslqsl|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Reynolds stress

: ð2:12Þ

The filtered equations, which are the object of simulation on a grid with a
resolution commensurate with the filter in LES, are then closed by modelling
SGS stresses to account for the effect of the unresolved small-scale eddies. In this
case, (2.9) will be closed on modelling the turbulent subgrid PV flux s.

We next consider the transfer of enstrophy from large to small scales at every
location in physical space. To this end, multiplying (2.9) by ql leads to an equation
for the evolution of large-scale potential enstrophy Z1Zq2l =2

vZ1

vt
CV$ðulZ1 CqlsÞZFlql CDlqlKPz 1 ; ð2:13Þ

and where

Pz 1 ZKs$Vql ZKððuqÞlKulqlÞ$Vql : ð2:14Þ

The flux on the l.h.s. can only spatially redistribute large-scale potential
enstrophy, where as the term Pz 1 represents the flux of potential enstrophy out
Phil. Trans. R. Soc. A (2008)
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of the large scales and into the small scales. To wit, the termPz 1 appears with the
opposite sign in the equation governing the evolution of the potential enstrophy
involving small scales,

vZ2

vt
CV$ðuZKulZ1K qlsÞZFqKFlql CDqKDlql CPz 1 ; ð2:15Þ

and where

Z2 Z ðq2Kq2l Þ=2:
The irreversible forward cascade of potential enstrophy requires that domain

integral of Pz 1 be positive. On integrating (2.13) over the domain, since the
dissipation of enstrophy at large scales is small, in a statistically stationary state,
enstrophy input by forcing is balanced by a flux of enstrophy out of the large
scales and into the small scales. For this to happen, the sub-filter PV flux
would have to have a net alignment down the gradient of the large-scale PV in the
domain-integrated sense.

In the following, we show that this required alignment between the turbulent
sub-filter flux of PV and the gradient of large-scale PV is weak. On the other
hand, we find that the turbulent sub-filter flux of PV is remarkably well aligned
with a nonlinear combination of large-scale gradients.

In either of these approaches, it is clear that it is only the divergent component of
the eddy flux that directly drives mean circulation. However, given the non-unique
(arbitrary) nature of a decomposition of the eddy flux into rotational and divergent
components, we prefer to analyse the full flux. The exception is the decomposition
of Marshall & Shutts (1981) but which we find does not help in general.
3. Orientation of the eddy flux of PV

We consider the classic configuration used in Holland & Rhines (1980) to study
eddy-induced ocean circulation. It consists of a two-layer ocean basin on a
midlatitude beta plane. A characteristic non-uniform ocean stratification is
considered in which the undisturbed top layer depth H1 is 1 km and the bottom
layer depth H2 is 4 km. The lateral geometry consists of a square domain with a
latitudinal and a longitudinal extent of 2560 km. The midlatitude beta plane is
such that the Rossby deformation radius is approximately 40 km and the grid
spacing is 10 km. The forcing consists of a steady double gyre wind stress with a
peak amplitude of 1 dyne cmK2. The dissipation consists of a combination of
bottom drag and small-scale mixing of relative vorticity that is either Laplacian
or biharmonic but with a (Munk) scale defined as (n2/b)

1/3 or (n4/b)
1/5 of

approximately 10 km.
An enstrophy and energy-conserving form of spatial discretization is used for

the Jacobian and time stepping is carried out using an adaptive fifth-order
embedded Runge–Kutta Cash–Karp scheme (Press et al. 1992) to minimize time
truncation errors. An advantage of this choice of numerical discretization is that
the resultant code is nonlinearly stable and allows for simulations at any level of
dissipation including no dissipation at all.

The long time-mean circulation and PV in the two layers are shown in figure 1.
The phenomenology of this flow is classic and often referred to in connectionwith the
PV homogenization theory. The reader is referred to Holland & Rhines (1980)
Phil. Trans. R. Soc. A (2008)
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Figure 1. (a(i),b(i)) Time-mean circulation and (a(ii),b(ii)) PV in non-dimensional units. (a)
Layer 1, top layer; (b) layer 2, bottom layer.
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for details. While the mean circulation in the lower layer is entirely eddy driven, the
mean circulation in the upper layer is modified at O(1) by the eddies. The ratio of
the eddy to mean kinetic energy is approximately 3 in the upper layer and
approximately 7 in the lower layer. We have carried out similar computations in
three-layer configurations in order to have a layer that is shielded from both direct
wind stress curl forcing and bottom friction, and the qualitative nature of the flows
remains unchanged.

That the flow is resolved should be clear from figure 2 where the horizontal
spectral distributions of the total energy (solid line) and the barotropic (dashed
line) and baroclinic (dot-dashed line) kinetic energies are shown. The bulk of the
total energy resides in the large-scale sloping of the isopycnals (layer interface)
and constitutes the available potential energy of the system, as seen by the
difference between the total energy (solid line) and the sum of the baroclinic
kinetic energy (dot-dashed line) and the barotropic kinetic energy (dashed line).
And the energy flow in the system from available potential energy to baroclinic
Phil. Trans. R. Soc. A (2008)
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2499Eddy fluxes in geostrophic turbulence
kinetic energy to barotropic energy follows the classic phenomenological picture
of geostrophic turbulence (e.g. Salmon 1998). Considering the non-uniform
stratification, the distribution of kinetic energy in the top layer looks more
similar to the distribution of kinetic energy in the baroclinic mode and likewise
with the lower layer barotropic pair. This is consistent with present
interpretation of altimetric data on large scales (Smith & Vallis 2001).
(a ) Inclination to mean or large-scale PV gradient

(i) Reynolds decomposition

Figure 3 shows the distribution of the angle between the eddy flux of PV and
the time-mean PV gradient using Reynolds decomposition in the two layers. In
this case and all other cases to follow, we obtain the angle between two vectors
in the usual manner of dividing their dot product by their magnitudes. If either of
the magnitudes is of the order of double-precision round-off, the angle is
undefined and not included in the analysis. Distribution of an angle is obtained
by considering the angle at all interior grid points (unless stated otherwise) at a
few different times (typically approx. 10) separated by the eddy-averaging time

(e.g. u 0q 0tðx;TÞ$Vqtðx;TÞ at various T, where t is the averaging time).
The required alignment of the eddy flux down the gradient of mean PV is

verified in the mean angle in the two plots being greater than p/2 (approx. 1.6
and 1.7 in the two layers, respectively). What is surprising, however, is how weak
this alignment is, particularly in the top layer. It is clear from figure 3 that the
local turbulent viscosity hypothesis (2.8) is generally not valid.

Time averaging of the eddy flux is performed over a period of approximately
3.4 gyre turnaround times where the lateral scale is the domain size and velocity
scale is the Sverdrup velocity. Varying the averaging time from 0 (instantaneous)
to 34 gyre turnaround times improves the mean inclination in the lower layer
from close to p/2 to approximately 2.2, with almost no change to the mean
inclination in the upper layer (1.6). The averaging over long times such as
Phil. Trans. R. Soc. A (2008)
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Figure 3. Distribution of angle between eddy flux of PV and time-mean PV gradient using
Reynolds decomposition in the (a) top layer and (b) bottom layer. The required alignment of the
eddy flux down the gradient of mean PV is verified in the mean angle in the above plots being
slightly greater than p/2 (1.6 and 1.7 in the two layers, respectively).
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34 eddy turnover times would be appropriate for a RA-based steady simulation;
for that a local downgradient eddy flux approximation is reasonable for the lower
layer only. Averaging over approximately 3.4 eddy turnover times seems to be
appropriate for an unsteady RA-based simulation, and, for this reason, we fix
averaging time at approximately 3.4 eddy turnover times for all RA-based
analysis. For this case, a local downgradient eddy flux approximation is
becoming inappropriate for either of the layers.

It is often assumed that wind forcing in the upper layer complicates an
examination of the downgradient nature of eddy flux of PV and that only
subsurface layers should be investigated in this respect. Equation (2.7) shows
that this is not the case, as pointed out by Drijfhout & Hazeleger (2001). Only
the variable part of the forcing, and then only that part that is correlated with
the eddy variability itself, affects the downgradient eddy flux of PV. Furthermore,
forcing in our case is steady. Also, note that the variations of upper layer thickness
do not change PV forcing in quasi-geostrophy. Thus, while upper layer
wind forcing allows flow there to cross PV contours, the forcing does not directly
affect the orientation of the eddy flux of PV with respect to the mean gradient.

It is only the divergent component of the eddy flux of PV that directly drives
mean circulation, and so, it would be just as well if only the divergent component
of the eddy flux is directed downgradient. The decomposition of the eddy flux
into rotational and divergent components has proceeded along two distinct
approaches (i) using a Helmholtz decomposition and (ii) considering components
along and across the mean gradient in conjunction with a rotational gauge.
The first of these approaches leads to a non-unique decomposition owing to the
arbitrariness of the boundary conditions that have been specified independently
on the rotational and divergent components (e.g. Fox-Kemper et al. 2003). This
renders the downgradient nature of any such redefined eddy flux questionable
and we do not attempt such a decomposition. The non-uniqueness in the second
approach is related to the gauge invariance, but has the advantage of allowing for
a purely local decomposition. While the reader is referred to Eden et al. (2007)
Phil. Trans. R. Soc. A (2008)
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Figure 4. (a,b) Distribution of the dot product between a divergent component of eddy–PV flux
and the mean gradient as given by (3.1) and (3.2). In effect a component of the eddy flux that
circulates around contours of perturbation potential enstrophy has been removed to obtain the
‘divergent’ component of eddy–PV flux.

2501Eddy fluxes in geostrophic turbulence
for a comprehensive presentation of the various forms this approach has taken,
and for additional physical requirements that are used to constrain the
indeterminacy, we consider here only the suggestion of Marshall & Shutts (1981).

Marshall & Shutts (1981) suggested that if the mean circulation contours do
not deviate much from the mean PV contours, then a two-way balance is possible
in (2.7). That the mean advection of perturbation enstrophy could be balanced
by a rotational PV flux aligned along contours of perturbation potential
enstrophy, leaving the rest of eddy–PV flux to be downgradient after neglecting
triple correlations. Thus, from the eddy enstrophy equation with RA (2.7), this
amounts to a two-way balance

V$ð�u�zÞZ ðu 0q 0 Þrot$V�q ; ð3:1Þ

D 0q 0 Z ðu 0q 0 Þdiv$V�q ; ð3:2Þ
again after neglecting triple correlations.

Figure 1 displays a significant degree of co-parallelism between contours of
time-mean stream function and PV. We, therefore, check the possibility of a
better alignment down the gradient of a component of the eddy flux as suggested
by Marshall & Shutts (1981). However, since a scatter plot of mean stream
function and mean PV displays large scatter, we use (3.1) as a definition, and
look at the distribution of

ðu 0q 0 Þdiv$V�q Z ðu 0q 0Kðu 0q 0 ÞrotÞ$V�q Zu 0q 0$V�qKV$ð�u�zÞ: ð3:3Þ

The two-signed nature of this quantity in figure 4 shows that the alignment to
the mean gradient using such a decomposition is not much better either. Note
that since we do not have the actual divergent component of the eddy–PV flux
(in this decomposition), we cannot determine the inclination of the divergent
component to the mean gradient. So, we rely on the fact that negative/positive
values of the above quantity correspond to down/upgradient fluxes. In figure 4,
only the western central quarter of the domain is considered since that is
Phil. Trans. R. Soc. A (2008)
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Figure 5. (a,b) Distribution of angle between sub-filter PV flux and large-scale PV gradient. The
distributions still peak at p/2, that is, the eddy flux is most often perpendicular to the large-scale
gradient. However, the net downgradient alignment is more pronounced than in the case of the
classical Reynolds decomposition.
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where the eddy activity primarily is and the two-way balance is expected.
The same figure using the full domain does not show any improvement in the
downgradient alignment.
(ii) Scale decomposition

For the scale decomposition analysis, we choose a filter that corresponds to an
inversion of the Helmholtz operator

ql Z 1K
L2
f

4p2
V2

� �K1

q; ð3:4Þ

where Lf is the filter width and qlZq on the boundaries and so also for any of the
other variables. We choose a filter width of 63 km, approximately 1.5 times the
Rossby deformation radius of 40 km. There are only minor differences on varying
the filter width from 40 to 80 km and these differences are not considered further.
The nature of the spectrum in figure 2 suggests that our results are not likely to be
sensitively dependent on the width of the filter over a wider range of filter widths.

Similarly, figure 5 shows the distribution of the angle between the (sub-filter)
eddy flux of PV and the large-scale gradient of PV using the LES formalism in the
two layers. The required alignment of the eddy flux down the gradient of mean
PV is verified in the mean angle in the two plots being greater than p/2 (approx.
1.6 and 1.7 in the two layers, respectively). Again the alignment is weak, and the
distribution of angles very similar to the distribution with Reynolds decom-
position. With the eddy flux, most often pointed perpendicular to the large-scale
gradient of PV, a local downgradient closure is again not justifiable.
(b ) Inclination to a nonlinear combination of gradients

In eddy-permitting simulations, some of the range of scales of turbulence is
explicitly resolved. Therefore, information about the structure of turbulence at
these scales is readily available. In LES formalism, there is a class of models that
Phil. Trans. R. Soc. A (2008)



2503Eddy fluxes in geostrophic turbulence
attempts to model the smaller unresolved scales of turbulence based on the
assumption that the structure of the turbulent velocity field at scales below
the filter scale is the same as the structure of the turbulent velocity field at scales
just above the filter scale (Meneveau & Katz 2000).

Further expansion of the velocity field in a Taylor series and performing
filtering analytically results in

ðuiujÞlf
vuli
vxk

vulj
vxk

; ð3:5Þ

a quadratic nonlinear combination of resolved gradients for the subgrid model.
The interested reader is referred to Meneveau & Katz (2000) for a comprehensive
review of the nonlinear gradient model.

Equivalently, the expansion of ul and ql in the Galilean invariant form
of the Leonard stress component of the sub-filter eddy flux of PV (2.12) in a
Taylor series

ðulqlÞlKullqll Z

ð
dx 0GðxKx 0Þ ulðxÞCðx 0KxÞj

vuli
vxj

ðxÞ
� �

qlðxÞCðx 0KxÞj
vql
vxj

ðxÞ
� �

K

ð
dx 0GðxKx 0Þ ulðxÞCðx 0KxÞj

vuli
vxj

ðxÞ
� �

!

ð
dx 0GðxKx 0Þ qlðxÞCðx 0KxÞj

vql
vxj

ðxÞ
� �

produces at the first order

sZC2l

vuli
vxj

vql
vxi

ZC2lVul$Vql ; ð3:6Þ

again a quadratic nonlinear combination of resolved gradients and where C2l is
the second moment of the filter used. In the two-dimensional context, this model
has been derived by Eyink (2001) without the self-similarity assumption, but
rather by assuming scale locality of contributions to s at scales smaller than
the filter scale, and its use has been investigated by Bouchet (2003) and Chen
et al. (2003).

The distribution of the angle between sub-filter PV flux vector and the
nonlinear vector combination Vul$Vql is shown for the two layers in figure 6. The
strong alignment of the eddy flux of PV in the direction of the nonlinear
combination is evident. We also note a small random component not aligned
with the nonlinear combination. We anticipate synthesizing an analysis of this
stochastic component together with the deterministic component based on the
nonlinear combination of gradients to develop a parametrization in the future.

In analogy with the scale decomposition approach, we check for the alignment
of Reynolds eddy flux of PV with Vu$V�q in figure 7. We note that Olbers et al.
(2000), in the context of a two-layer wind-forced zonally homogeneous channel
and using Reynolds decomposition, consider a form that is somewhat similar
(their form would involve a cubic nonlinearity as opposed to a quadratic
nonlinearity here). In comparison with the alignment with the gradient in
Phil. Trans. R. Soc. A (2008)
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figure 3, this alignment is qualitatively different with a slight preference for the
up- and downgradient directions, but the overall alignment is no better and thus
does not prove to be an obvious candidate to consider for parametrizations. In
this RA context, it would also be interesting to check if with the TRM-G
suggestion of Eden et al. (2007) for a rotational component of the eddy flux, the
alignment between u 0q 0 and Vu$V�q will improve.

Figure 8 shows instantaneous spatial structure of the alignments (in radians)
with Vql and Vul$Vql in the scale decomposition formalism. In figure 8b, poor
alignment with Vql is indicated by an almost equal distribution of red–yellows
and green–blues. On the other hand, in figure 8c, strong parallel alignment with
Vul$Vql is indicated by a predominance of blue–blacks over red–yellows. A
similar plot of the time-averaged PV, and alignments of Reynolds eddy flux of
PV with V�q and Vu$V�q , shows poor alignments in both cases in figure 9.
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4. Discussion

Given its multiscale nature, DNS of ocean circulation on time scales of interest
are unlikely. Modelling the effects of a substantial range of unresolved scale on
larger scale circulation is therefore necessary. While RA-based modelling is
appropriate for coarse-resolution simulations with resolutions of the order of a
100 km, an LES approach seems to be more appropriate for the eddy-permitting
and eddy-resolving simulations that are presently possible for the interannual to
decadal time scale.

Using eddy-resolving simulations, we examined the nature of eddy flux of PV
in the RA and scale decomposition approaches in an inhomogeneous (basin)
setting. In either of these approaches, a net alignment of the eddy flux with the
large-scale gradient of PV is required and verified. However, this alignment is
found to be weak in both approaches.

To our knowledge, previous analyses of the eddy flux of PV have only employed
the RA approach. We do not attempt a comprehensive discussion of that
literature here since it is far too extensive. However, the required net alignment in
the RA approach and extensive research by the atmospheric community, using
two-layer QG dynamics to study homogeneous b-plane turbulence in the presence
of prescribed vertical shear, has been used as a justification for modelling the eddy
flux as locally pointing down the mean gradient. Our finding of weak
downgradient alignment is in-line with previous such findings (e.g. Holland &
Rhines 1980; Olbers et al. 2000; Drijfhout & Hazeleger 2001) that when the
turbulence is not homogeneous the local downgradient closure is not verified. This
is because advection of eddy enstrophy plays a very significant role, particularly
so in a basin configuration. Thus, a local downgradient closure may be seen as
increasingly inappropriate in going from fully homogeneous settings to zonally
homogeneous settings to basin configurations.

On the other hand, the eddy flux of PV in the scale decomposition approach
aligns well with a nonlinear combination of large-scale gradients motivated by
the notion of similarity of the structure of turbulence below and above the scale
of interest. The eddy flux of PV in the Reynolds decomposition approach does
not align well with a similar nonlinear combination of mean gradients. This
reiterates the appropriateness of the LES approach to mesoscale eddy-permitting
and eddy-resolving regimes.

A transformed Eulerian mean (TEM) or temporal residual mean (TRM;
e.g. Eden et al. 2007 for a discussion) formulation of the mean PV budget
relates the eddy PV flux directed perpendicular to the mean PV gradient to an
eddy-induced advection velocity. Combining scalar diffusivity with such an eddy-
induced advection also leads to a tensorial structure for the diffusivity. The poor
alignment of u 0q 0 with Vu$V�q that we find in our preliminary tests suggests that
the tensor diffusivity is not strongly related to the mean velocity deformation
tensor. This finding, however, needs to be examined further.

The complications posed by rotational eddy fluxes have long been recognized
and various attempts have been made to define a dynamically relevant rotational
eddy flux. A comprehensive discussion of a local decomposition can be found in
Eden et al. (2007). We considered one simple instance of such a decomposition, as
suggested by Marshall & Shutts (1981) and found that a balance between the
advection of eddy enstrophy and a rotational component of the eddy flux does not
Phil. Trans. R. Soc. A (2008)
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improve the alignment between the remaining component and mean PV gradient
in the downgradient sense. In a more generalized sense, we could have checked the
alignment between this remaining component and Vu$V�q , or for that matter also
use the TRM-G prescription for the rotational component and check for
alignments of the remaining component. These aspects of analysing u 0q 0 are,
however, of tangential interest to this paper and we did not pursue them.
Phil. Trans. R. Soc. A (2008)
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2507Eddy fluxes in geostrophic turbulence
The good correlation that we obtain between the sub-filter eddy flux of PV and
the nonlinear model in the scale decomposition approach is not entirely
surprising. Similar good correlations using the nonlinear model have been seen
both in three- and two-dimensional turbulent flows (e.g. Meneveau & Katz 2000;
Bouchet 2003; Chen et al. 2003). In some of these other contexts, the nonlinear
model has been recognized to be insufficiently dissipative. This was actually
noted in the a posteriori sense in the barotropic double gyre ocean circulation
context in Holm & Nadiga (2003) as well.
Phil. Trans. R. Soc. A (2008)
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How well a model performs is best assessed by comparing results from
simulations that use and do not use the model against available data, some of
which may come from appropriately resolved simulations (a posteriori testing
of LES). However, because results of simulations contain integrated effects of
numerical discretization and other artefacts, besides the effects of the model, a
posteriori testing is not very insightful (e.g. Ghosal 1996; Meneveau & Katz
2000; Holm & Nadiga 2003; Nadiga & Livescu 2007). We have instead, conducted
preliminary a priori testing, wherein sub-filter turbulent fluxes are checked for
correlations against larger scale quantities in a resolved flow. While we find
good correlations to a nonlinear combination of gradients, this correlation is
neither necessary nor sufficient for LES using this model to perform well. It,
however, provides a good physical basis to design parametrizations.

The findings on the orientation of the eddy flux of PV that we present here are
of significance to both deterministic and stochastic representation of subgrid
processes in geostrophic turbulence. First, from the deterministic modelling point
of view, we expect that parametrizations based on the nonlinear model will be
better than those based on downgradient closures.

In the scale decomposition approach, the poor alignment between the eddy flux
of PV and the large-scale gradient and the peaking of the angle between them at
p/2 implies the importance of the two-way communication between the sub-filter
scales and the larger scales. There is simultaneous (i) drain of enstrophy from large
to small scales and (ii) backscatter from small to large scales. These two processes
are of comparable importance and there is only a slight difference between the two
processes that result in the net downgradient nature of the alignment. Eddy
(subgrid) viscosity approaches, on the other hand, end up representing only the
small net downgradient nature of the sub-filter resolved-scale interactions. With
the situation being similar in the forward energy cascade regime of three-
dimensional turbulence, improved subgrid models have been obtained by
representing the two processes distinctly (Leith 1990; Chasnov 1991). This
forms the basis of stochastic LES in the context of three-dimensional turbulence.

One may similarly anticipate better subgrid models of geostrophic turbulence
when both the drain and backscatter processes are represented rather than just
the net effect. In fact, Jung et al. (2005) have successfully employed such a
strategy in an operational atmospheric circulation model to reduce certain model
biases and improve the simulation of certain weather regimes. In more idealized
oceanic set-ups, Berloff (2005), Nadiga et al. (2005), Duan & Nadiga (2007) and
Nadiga & Livescu (2007) have performed statistical analyses of sub-filter terms
and reported preliminary results from such stochastic sub-filter closures.

Thus, if the subgrid modelling problem is approached from the point of view
of (scalar) eddy viscosity, then, a stochastic representation of backscatter has
shown promise. However, the good alignment of eddy flux of PV with Vul$Vql
that we find suggests that a parametrization of the eddy flux based on Vul$Vql
has the potential to model the forward and backscatter rather naturally and
deterministically.

From the point of view of an eddy viscosity closure, the good correlation between
the eddy flux of PV and the large-scale nonlinear gradients implies a tensorial
rather than a scalar form for the eddy viscosity. This is understandably so, since in
LES there is not a good separation of scales that is required for a scalar eddy
viscosity closure to hold (Kraichnan 1967). In analogy with the TEM and TRM
Phil. Trans. R. Soc. A (2008)
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approaches, the tensorial form of eddy viscosity implies an eddy-induced
advection in addition to diffusion (and anti-diffusion) of PV in the scale
decomposition or LES approach.

That the resolved component of velocity deformation determines the structure of
the eddy viscosity tensor, implies owing to the incompressible nature of the velocity
field, that certaindirectionswill be subject tonegative viscosity—an issue thatwewill
address and report on elsewhere. However, we note that the angle between the sub-
filter flux and the nonlinear gradient itself is a random variable with a distribution
peaked at 0. This implies that there is a small component of the sub-filter eddy flux
that is not well represented by the nonlinear gradient. We are studying the nature of
this component and anticipate themodel for this component to play a significant role
in developing a parametrization based on the nonlinear combination of gradients.

State-of-the-art OGCMs are RA based. This is, however, not a handicap for
implementingmodels based on scale decomposition.This is evident in the form of the
governing equations (2.3) and (2.9) in the present context in the two approaches.
Thus, given an ocean model based on RA, it is straight forward to implement a
model based on scale decomposition ideas. It should be noted, however, that while
in the RA approach, S is a model for the fluctuating component of the full spectrum
of spatial scales, in the LES approach, s is a model only for the spatial scales
that are not resolved. Further, when such a scale decomposition-based model has
been implemented in a conventional ocean model, it is important to interpret the
variables in the scale decomposition sense rather than in the RA sense.

Finally, we expect that, although the findings of this article are not based on
simulations of extensive ranges of parameters, the qualitative nature of these
results will hold-up in flow situations where eddies play an important role in
shaping the large-scale and/or mean circulation.

I would like to thank Greg Eyink for extensive discussions and Andy Majda for encouraging me to
pursue and write-up some early work that I presented at a workshop in Banff. Constructive
criticism by Carsten Eden and an anonymous referee of the original manuscript has led to
significant improvement in the presentation. B.T.N. was supported in part by the Climate Change
Prediction Program of DOE and the LDRD Program at LANL (20030038DR).
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