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Abstract

On the decadal to centennial time scale, changes in climate are controlled strongly by changes in ocean circulation. However,
because of limitations inherent to the time integration schemes used in present-day ocean models, state-of-the-art climate change
simulations resolve the oceans only very coarsely. With an aim to enable long-term simulations of ocean circulation at the high
resolutions required for a better representation of global ocean dynamics, we have implemented fully-implicit time integration
schemes in a version of the popular ocean general circulation model POP (Parallel Ocean Program), employing Jacobian-free
Newton–Krylov techniques. Here, we describe the numerical principles underlying iPOP in some detail and present a few
computational results. While there are many advantages to this approach, including a consistent and uniform treatment of the
terms in the governing equations, the primary advantage lies in the ability to take time steps that are of relevance to the physical
phenomenon that is being studied. The time step is not limited (for stability reasons) by the fastest modes of the system.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Studies of the variability of our climate system suggest that changes in the oceanic thermohaline circulation (THC)
have the potential to trigger severe climate change events. A popular example of this is a scenario in certain climate
models wherein a weakening of the thermohaline circulation in the North Atlantic from its present level due to doubled
CO2 levels in the atmosphere, triggers a change to ice-age-like conditions [1,2].

The myriad physical processes occurring on a vast range of spatial and temporal scales and coupling to each
other, compounded by a paucity of long-term observations, make computational modelling of the climate system an
indispensable tool in understanding climate variability. An important component of the climate system is the ocean,
and on the decadal to centennial time scales, variability of the climate system is crucially controlled by the ocean. The
computational challenge of ocean modelling arises from the need to accurately represent the immense range of spatial
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and temporal scales that interact to produce the intricate and complex behavior of the ocean system. In this sense, the
dynamics of ocean circulation is a prototypical strongly coupled multiscale phenomenon, and the modelling of such
systems in general is an area of great current scientific interest.

While early studies of the weakening of the THC were based on box models of oceans (e.g. [3]) wherein the global
ocean is idealized as a few (typically two or three) interconnected rectangular basins, the more recent studies (see
[4] and references therein) use realistic Ocean General Circulation Models (OGCM) but at very coarse resolutions
(300–400 km at the equator corresponding to about 3◦–4◦ spacing in terms of latitude and longitude). While studies
using these models have given insights into possible mechanisms for variability of the thermohaline circulation,
the lack of detailed representation of dynamics, e.g. mesoscale eddy fields and topography in these models is a
shortcoming that needs to be further worked on [4]. On the other hand, notwithstanding numerous issues regarding
closure of the equations at the smallest resolved scales, studies of ocean circulation on the shorter (annual to decadal)
time scale have shown that the global ocean circulation can be modelled quite realistically using high resolution (grid
spacings of around 10 km or approximately 0.1◦ of latitude and longitude at the equator (e.g., see [5,6]). An important
result coming out of these studies is the major role played by detailed topography. Furthermore, these results also
seem to suggest the importance of the mesoscale eddy field in shaping the mean circulation. Thus, further systematic
studies of possible climate change scenarios would be greatly helped by the ability to carry out long-term (centennial
to millennial time scale) simulations of the world oceans using fairly high resolutions.

The adjustment of dynamical and thermodynamical processes in the ocean to external forcings occur over a
wide range of time scales. While barotropic adjustment occurs on the order of days, slow, mid-latitude, planetary
waves may take years to adjust, and the thermohaline processes equilibrate only on the centennial–millennial time
scale. Furthermore, the adjustment or quasi-equilibration of these processes are mediated by a variety of inertia-
gravity waves (e.g. see [7]). To deal with these different characteristic times, most present-day ocean models split
the governing equations, in a rather ad hoc fashion, into subsystems that purport to include dynamics over a limited
range of time scales, e.g., fast, slow, very slow, etc. Computational savings are then realized when these subsystems
are solved using different time steps, with the subsystems with slower dynamics being solved with longer time steps.

As an example, the external gravity waves that are the fastest dynamics of the primitive equation system (with wave
speeds that are given by

√
gD, where g is the acceleration due to gravity and D is the depth of the ocean, of about

200 m/s) are isolated into a two-dimensional system, the so-called barotropic mode. With such a restriction of the
fastest modes of the full system to a two-dimensional subsystem, substantial savings in computational costs can be
achieved since, now, the rest of the system, the so-called baroclinic subsystem, can be evolved using longer time steps.
The fast two-dimensional subsystem (in which the baroclinic forcing term is held constant) is solved either implicitly
in the semi-implicit formulation, e.g., as in POP (Parallel Ocean Program) [8] or explicitly using shorter time steps in
the split-explicit formulation, e.g., as in MICOM (Miami Isopycnal Coordinate Ocean Model) [6], with the slower 3D
baroclinic subsystem being treated explicitly in both cases.

While this type of splitting is natural in a linear system with horizontally-homogeneous stratification, and a flat
top and bottom, it is ad hoc in the presence of horizontally-variable stratification, realistic bottom topography, free-
surface top boundary condition, and nonlinearities of the governing equations. These latter factors are likely to lead
to a leakage of the fast modes into the intended slow system, and therefore require further ad hoc fixes so that the
baroclinic subsystem can actually be stably integrated using a longer time step. (In a further extension of this idea, but
at the cost of introducing additional ad hoc approximations and errors, along with the barotropic modes, the first few
internal gravity wave modes can similarly be isolated into a hierarchy of two-dimensional subsystems.)

As previously mentioned, present day OGCMs when used for climate studies resolve the oceans only very coarsely
(3◦–4◦ in longitude and latitude), and in the process fail to represent the most energetic part of the kinetic energy
spectrum, the mesoscales. Consequently, the flow velocities encountered in these simulations are rather small and
the resulting circulation sluggish. With this coupled to the barotropic–baroclinic splitting used in most OGCMs, one
would expect to be able to take reasonably long time steps—time steps that would correspond to advective CFL
numbers of about 1. However, the time step actually used at these coarse resolutions tends to be much shorter – about
an hour(e.g., see [9,10]) – corresponding to advective CFL numbers much smaller than one, clearly demonstrating
limitations of the presently used techniques of time integration used in present day OGCMs.

Finally, long term studies of ocean circulation typically use an artificial acceleration of the slow evolution of tracers
(sometimes with an acceleration that is depth-dependent) below the upper ocean [11–14], at least in the spin-up phase,
to further reduce computational costs. This kind of tracer acceleration in possible conjunction with artificial slow down
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of momentum modes is called the distorted physics technique. It is untenable either when the transients are of interest
or are of importance (as due to the presence of mesoscale eddies) or when the thermodynamics of the ocean system
itself is not in a state of equilibrium, but rather engenders variability as in climate change scenarios. Furthermore,
these kinds of techniques additionally introduce time step sensitivities and other unfavorable interactions with other
physical processes in OGCMs [15]. Thus, the presently used techniques of time integration in ocean models are rather
ill-suited for climate scale studies.

Thus, a fully implicit approach, in which all components of ocean circulation are handled in a consistent and
uniform fashion, may be well-suited for the centennial–millennial scale simulations of ocean circulation. With implicit
methods, the size of the time step is restricted only by accuracy, not by stability. This allows us to “step over” the fast
time scales and use a smaller number of larger time steps to achieve long-term simulations. Physically, this may be
thought of as effectively evolving the slow modes of the system while continually equilibrating the faster modes. To
illustrate, consider a model time-dependent problem that includes both fast and slow time scales:

ut = f(u), (1.1)

where u is a state vector and f is nonlinear. The backward Euler (BE) method is the simplest approach for implicitly
advancing the solution in time. For BE, the time-advanced solution un

h is the approximate solution of

F(uh) ≡ uh − un−1
h − 1tfh(uh) = 0, (1.2)

where 1t is the time step, the subscript h refers to spatially discretized quantities, and the superscript refers to the
discrete time step; uh is the exact solution of (1.2).

In (1.2), if 1t is taken to infinity, then both the fast scales and the slow scales are exactly equilibrated and a steady
state is obtained. It is in this limit that Dijkstra, Weijer and co-workers [16–19] have extensively investigated the
stability of the global overturning circulation. In these works, the steady states and their local bifurcation structure
were computed using a Newton–Krylov formulation in conjunction with continuation techniques. However, if 1t is
chosen to resolve the slow dynamics, but at the same time is much larger than the fast time scale, then a solution
of the nonlinear algebraic system (1.2) results in only the fast dynamics being equilibrated. That is to say, the main
dynamical evolution is that of the slow modes, and they are accurately resolved. Clearly, the evolution of the fast
modes is distorted, but it is important to note that in this implicit setting the fast modes can drive the slow modes. This
is in contrast to a situation where the fast modes are eliminated and hence cannot possibly influence the slow modes.
Finally, in the implicit setting, the time step is not limited by the fast dynamics.

It is natural to employ Newton’s method to solve the nonlinear algebraic system (1.2). In such a case, a linear
system involving the Jacobian of F with respect to u arises. Considering the complexity of F in an OGCM, it would
seem difficult to compute and store the Jacobian matrix. However, what is natural in OGCMs is for a subroutine to act
on a state vector and transform it into another state vector. Thus we would prefer not to explicitly compute and store
the Jacobian matrix, but rather deal only with matrix–vector products. Finally, Krylov space techniques are attractive
for solving the resulting linear systems. All of these ingredients have been combined into what are called Jacobian-
Free Newton–Krylov (JFNK) methods to solve systems of nonlinear algebraic equations in the field of Computational
Fluid Dynamics (CFD) (e.g., see [20] or, for a recent review, see [21]). JFNK-based time-integration has been applied
in the geophysical context to one-dimensional and two-dimensional shallow water equations by Reisner et al. [22] and
Mousseau et al. [23], and, as mentioned earlier, Dijkstra, Weijer and co-workers [16–19] apply the Newton–Krylov
methodology to compute steady states but also make explicit use of the Jacobian.

We have implemented, using JFNK techniques, fully-implicit evolution schemes in a version of POP that we call
iPOP. This approach allows for high-resolution modelling of ocean circulation using a computational time step that
is relevant to the problem under consideration, rather than one based on stability requirements dictated by the fastest
process—be it a day, a month, or a year. However, we stress that for the large-scale simulations that we envisage
for studying the variability of the global thermohaline circulation, the viability of this approach depends not just
on the ability to take long time steps but also on the efficiency and scalability of the method. While scalability to
massively parallel machines is assured by the Jacobian-free nature of the method (e.g., see [20]), efficiency is a more
difficult issue. The efficiency of this approach is presently not good in the sense that it is about an order of magnitude
slower compared to semi-implicit time stepping, and clearly requires more work. Improved efficiency is contingent
upon better matrix-free preconditioning and better scalable (parallel) matrix-free linear solvers—both areas of intense
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ongoing mathematical research, and beyond the scope of the present article. In fact, we intend this article to be
of a descriptive nature, presenting various aspects of the algorithm that go into the fully-implicit time integration
framework and showing some results. We defer a discussion of important issues such as those related to accuracy and
efficiency to future articles.

2. JFNK-based fully-implicit time integration

2.1. Governing equations

The starting point for describing the fluid dynamics of the ocean are the Navier–Stokes equations with rotation.
However, scale analysis indicates that certain approximations can be made if the interest is in describing large scale
circulation. In such a case, with circulation velocities everywhere being much smaller than the propagation speed
of sound, the flow may be considered incompressible, with changes in density limited to those acting as sources
or sinks of buoyancy. This leads to the Boussinesq approximation. Further, since the vertical scales of motion are
much smaller (the oceans are typically only about 5 km deep) than the corresponding horizontal scales of motion
(that can extend to the global scales), the vertical momentum equation can be well-approximated by hydrostatic
balance—a balance between the vertical pressure gradient term and buoyancy. Computationally, the hydrostatic
approximation removes the need to invert a three-dimensional elliptic equation for the pressure that is used to ensure
incompressibility otherwise; instead incompressibility is now used to diagnose the vertical velocity w at each time
step given the evolving horizontal velocity u. The equations resulting from an application of the Boussinesq and
hydrostatic approximations to the Navier–Stokes equations are termed the Hydrostatic Primitive Equations (HPE).

When the primitive equations are considered with the vertical coordinate being depth z, the primary unknowns are
the horizontal velocity u, and a pair of tracers, temperature, T , and salinity, S. These variables are to be determined
in the three-dimensional region of the global ocean that is laterally interrupted by continents and bounded at the
bottom by specified topography, H(x, y). The upper surface of the domain η is however free to evolve dynamically,
η = η(x, y, t), and as such the primitive equations include a free boundary problem. The boundary conditions include:
no normal flow at all solid boundaries and no slip at lateral boundaries. Finally, the boundary conditions at the top
surface are determined from interactions of the oceanic mixed layer with the overlying atmosphere; these are the main
drivers of circulation.

The governing equations may be thought of conveniently in terms of the explicit evolution of the variables as
follows. Tracers, which serve as the source of buoyancy changes, evolve according to the advection–diffusion equation

dT
dt

= κh ∇
2

h
T +

∂

∂z
κv

∂T
∂z

+ FT (2.1)

where ∇h is the horizontal gradient operator, d
dt is the substantial derivative given by

d
dt

=
∂

∂t
+ u·∇h + w

∂

∂z
, (2.2)

u is the horizontal velocity and w the vertical velocity. The dissipative terms in the tracer evolution equation are
thought of as parametrizations of turbulent diffusion. They are split into horizontal and vertical components to reflect
the stratified nature of the flow: with vertical (more correctly diapycnal) motion being inhibited and turbulent mixing
in the horizontal (more correctly isopycnal) direction being much greater. In practice, the mixing terms are usually
rotated to be in the isopycnal–diapycnal directions rather than in the vertical–horizontal directions as written. These
terms are, of course, open to further modeling. The forcing terms FT are parametrizations of heat and salinity fluxes
at the air–sea interface and are specified.

While the horizontal velocity u evolves under the Boussinesq approximation as

du
dt

+ f k × u =
1
ρr

∇h p + ∇ · (ν∇u) + Fu, (2.3)

the vertical velocity is diagnosed from the incompressibility condition

∇h · u +
∂w

∂z
= 0. (2.4)
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The dissipative term in the horizontal momentum equations (2.3) is thought of as a turbulence closure and is open to
modeling, but is here simply represented by a specified turbulent eddy viscosity. The forcing Fu is again specified and
primarily consists of parametrizations of momentum exchange at the air–sea interface.

The pressure required to evolve the horizontal velocity consists of two components—the surface component and
the hydrostatic component. The surface component is found from the sea-surface height (SSH) η that also constitutes
the upper free boundary of the domain, as previously mentioned. The evolution of SSH η is related to the (previously
diagnosed) vertical velocity w at the surface, but may be conveniently expressed by a vertical integration of the
incompressibility condition (or continuity equation) as follows

∂η

∂t
+ ∇ · [(H + η)̂u] − qw = 0, (2.5)

where H(x, y) is specified topography, û is the vertically averaged horizontal velocity and qw are specified sources
due to evaporation and precipitation. The surface component then acts as the boundary condition and the full pressure
is diagnosed from the hydrostatic relation

∂p

∂z
= −ρg, (2.6)

where ρ is the density and is determined from temperature, salinity and pressure according to the equation of state

ρ = ρ(T, S, p). (2.7)

Finally, having made the hydrostatic approximation, as is appropriate for the dynamics of the large scales that we
are interested in, any unstable stratification that may result, as for example from buoyancy forcing at the surface,
will have to be additionally resolved. This is achieved through a parametrization of unresolved small-scale convective
processes, and is called convective adjustment. Convective adjustment involves either a vertical mixing of the water
column using a diagnosed vertical diffusivity that is large in regions of unstable stratification or an iterative mixing of
vertically-adjacent cells that are unstably stratified.

2.2. Numerical approach

In this section we describe, in some detail, the numerical approach that we took to approximate the governing
equations described in the previous section. Since our starting point is the POP OGCM, the POP reference manual
[24] gives all relevant details about the governing equations, approximations and spatial discretization. The basic
ingredients are well-known. After discretizing in space, one obtains a method-of-lines system that we write in the
form

dU

dt
= f (t, U ), U (t) ∈ RN . (2.8)

This system of ODEs is discretized in time using an implicit method, ensuring that the time step 1t is not restricted
by stability requirements. In each time step one has to solve a nonlinear system of equations with N unknowns. We
apply a preconditioned Jacobian-free Newton–Krylov iteration. The aim of this section is to describe the numerical
properties of the ingredients in some detail.

Space discretization
We use the second-order difference formulas as provided by POP [24].

Time-stepping
Let Un ∈ RN denote the computed numerical approximation at time t = tn and let 1t denote the current time

step. We want to obtain an approximation Un+1 for U (tn+1) where tn+1 = tn + 1t . In the simplest case, Un+1 is the
solution of the backward Euler equation,

Un+1 − Un = 1t f (tn+1, Un+1). (2.9)
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The local truncation error of the formula is O(1t). The Crank–Nicholson formula

Un+1 − Un =
1t

2
( f (tn, Un) + f (tn+1, Un+1)) (2.10)

has a local truncation error of order O((1t)2). In future work, we also plan to use backward differentiation formulas
(BDF) and, possibly, methods of Radau type. We refer to [26] for details of these methods.

Assuming tn−1 = tn − 1t , the 2nd order BDF formula reads

3
2

Un+1 − 2Un +
1
2

Un−1 = 1t f (tn+1, Un+1). (2.11)

Remarks on stability
It is common to discuss stability properties of time-stepping processes like (2.9)–(2.11) by applying them to the

scalar model equation

dU

dt
= λU (2.12)

where λ is a complex parameter. One may think of λ as an eigenvalue of the Jacobian fU (t, U ) for t ∼ tn and
U ∼ Un . Precise relations between numerical properties of a method when applied to the model problem (2.12)
and when applied to a nonlinear system (2.8) are non-trivial, however. We ignore this complication in the following
discussion.

If the backward Euler formula (2.9) is applied to (2.12), one obtains

Un+1 = gBE(λ1t)Un with gBE(z) =
1

1 − z
.

The growth function gBE(z) satisfies

|gBE(z)| < 1 for Re z < 0,

which makes the backward Euler formula A-stable. We also note that

gBE(z) → 0 as |z| → ∞,

which implies good damping properties of the method.
An application of the Crank–Nicolson formula (2.10)–(2.12) yields

Un+1 = gC N (λ1t)Un with gC N (z) =
1 +

z
2

1 −
z
2
.

Again, the growth function satisfies

|gC N (z)| < 1 for Re z < 0

implying A-stability of the Crank–Nicholson method. We note that

gC N (z) → −1 as |z| → ∞,

thus there is some danger that unresolved time oscillations remain undamped.
An application of the backward differentiation formula (2.11), (2.12) yields the second order difference formula(

3
2

− z

)
Un+1 = 2Un −

1
2

Un−1 with z = λ1t.

Assuming

Un = ζ n, n = 1, 2, . . .
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where ζ n is the n-th power of a complex number ζ , one obtains the quadratic equation(
3
2

− z

)
ζ 2

− 2ζ +
1
2

= 0 (2.13)

for ζ . Let ζ1,2(z) denote the two roots of (2.13). It is elementary to show that

|ζ1,2(z)| < 1 for Re z < 0

which makes the BDF formula (2.11) A-stable. Also,

ζ1,2(z) → 0 as |z| → ∞,

which gives the method better damping properties than the Crank–Nicolson formula. Of course, an advantage of the
Crank–Nicolson formula (2.10) over the BDF formula (2.11) is storage: (2.10) requires storage of the solution at a
single previous time level, whereas (2.11) requires storage of solutions at two previous time levels.

Solution of nonlinear systems
Any of the time discretization methods described above lead to nonlinear systems of equations that need to be

solved at each time step. We write such a system as

F(x) = 0, x ∈ RN . (2.14)

For example, if the backward Euler formula (2.9) is employed for time-stepping, then one must solve the system

F(Un+1) = 0

where

F(x) = x − Un − 1t f (tn+1, x), x ∈ RN .

A basic iterative scheme, and the starting point of our discussion, is the classical Newton method. If xk is the
current approximation to an exact solution x∗ of (2.14), then one solves the linear system

F ′(xk)sk = −F(xk), sk ∈ RN , (2.15)

for sk and sets

xk+1 = xk + sk .

In (2.15), F ′(xk) denotes the Jacobian of F(x) evaluated at x = xk . A main advantage of Newton’s method is its fast
local convergence. If F ′(x∗) is nonsingular and if x0 is sufficiently close to x∗, then

‖x∗
− xk+1‖ ≤ C‖x∗

− xk‖
2, k = 0, 1, . . . . (2.16)

Here C is a constant which is independent of k and x0. Roughly speaking, the estimate (2.16) says that the number of
significant digits in the approximation xk doubles with each Newton iteration.

Inexact Newton iterations
However, given the difficulty of finding a good initial guess, inexact Newton iterations are commonly used and

may be briefly described as first solving for an approximate Newton direction sk such that

‖F ′(xk)sk + F(xk)‖ ≤ ηk‖F(xk)‖ (2.17)

and then going only partway along that direction:

xk+1 = xk + λksk . (2.18)
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Jacobian-free Newton–Krylov
For large scale systems F(x) = 0 it is not feasible to build the Jacobian matrix F ′(xk) and to solve the linear

system (2.15) using direct methods like Gaussian elimination or LU -factorization. There are many ways to compute
approximations for sk , be it either the exact solution of the Newton system (2.15), or the solution of the inexact Newton
system (2.17). Krylov subspace methods are attractive since they require only computations of matrix–vector products
F ′(xk)v, and these may be approximated by the difference formula

F ′(xk)v ∼
1
ε
(F(xk + εv) − F(xk)).

Using this approximation, it is clear that the Jacobian F ′(xk) never has to be formed explicitly. Such an approach to
approximating the solution of the system F(x) = 0 is commonly referred to as the Jacobian-free Newton–Krylov
method.

For ease of reference and to gain a better understanding of the expected properties of the whole iterative process,
we next recall the GMRES algorithm for solving a linear system, Ax = b.

GMRES: an iterative solver for linear systems
The generalized minimum residual method GMRES, which belongs to the class of Krylov based iterative methods,

was proposed in [27] to solve large, sparse, non-symmetric linear systems Ax = b. In our code we use the public
domain software GMRES as provided in [25].

We first describe the algorithm in its well-known basic form. We then comment on preconditioning and restarting.
We use the notation

〈x, y〉 =

∑
x ( j)y( j), |x | = 〈x, x〉

1/2

for the Euclidean inner product and norm on RN . Here x ( j) is the j-th component of the column vector x ∈ RN .
Let x0 ∈ RN be an initial guess for the solution of the system

Ax = b (2.19)

and let

r0 = b − Ax0

denote its residual. GMRES builds approximate solutions for (2.19) of the form

xm = x0 + Vm ym, m = 1, 2, . . . (2.20)

where Vm ∈ RN×m is a matrix with m orthonormal columns which form a basis of the Krylov space

Km = Km(x0) = span{r0, Ar0, . . . , Am−1r0}.

The vector ym ∈ Rm is determined so that the Euclidean norm of the residual rm = b − Axm is minimized, i.e.,

|b − x0 − AVm ym | < |b − x0 − AVm y| for all y ∈ Rm, y 6= ym .

Computation of Vm and Hm

The m orthonormal columns v j ∈ RN of Vm can be computed by the well-known Arnoldi iteration. We describe
this iteration here using the modified Gram–Schmidt process, which proceeds as follows:

v1 = r0/|r0|

for j = 1 to m
v = Av j
for i = 1 to j
hi j = 〈vi , v〉

v = v − hi jvi
end i
h j+1, j = |v|

v j+1 = |v|/h j+1, j
end j
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Remark. The software [25] offers other options besides modified Gram–Schmidt, like iterative classical
Gram–Schmidt. The latter is attractive in a distributed memory environment.

Upon completion of the above MGS process, one has obtained m + 1 orthonormal vectors

v1, . . . , vm+1 ∈ RN

and numbers hi j for j = 1 to m and i = 1 to j + 1. The numbers hi j can be used to form the upper Hessenberg
matrices

H̃m


h11 . . . h1m
h21 h22 . . . h2m

. . .
. . .

...

hm,m−1 hmm
0 hm+1,m

 ∈ R(m+1)×m

and

Hm


h11 . . . h1m
h21 h22 . . . h2m

. . .
. . .

...

hm,m−1 hmm

 ∈ Rm×m .

Note that the square matrix Hm is obtained from H̃m by dropping the last row.
Let

Vm = (v1, . . . , vm), Vm+1 = (v1, . . . , vm, vm+1).

It is not difficult to show that

AVm = Vm+1 H̃m . (2.21)

In fact, the j-th column of (2.21) states that

Av j =

j+1∑
i=1

hi jvi ,

which follows directly from the definition of the numbers hi j and the orthonormal vectors vi in the modified
Gram–Schmidt process.

Eq. (2.21) implies that

V T
m AVm = Hm . (2.22)

Roughly speaking, Eq. (2.22) says that the low-dimensional matrix Hm represents the action of A restricted to the
Krylov space Km , followed by the orthogonal projection onto Km . Therefore, one can expect that the m eigenvalues
of Hm are approximations to m eigenvalues of A. In fact, typically, the extreme eigenvalues of A are approximated
by the eigenvalues of Hm . This is reasonable since the Krylov space Km encodes the repeated action of A, which
emphasizes the extreme eigenvalues. It is therefore reasonable to monitor if the eigenvalues of Hm lie in the stability
regions of the time stepping method employed.

Remark. A precise interpretation of Hm = V T
m AVm is as follows. Let Vm y ∈ Km be arbitrary and let z = Hm y. The

vectors

Vm y =

∑
j

y( j)v j and Vm z =

∑
j

z( j)v j

lie in Km . The numbers y( j) and z( j) are their coordinates in the basis v1, . . . , vm of Km . We have

Vm z = Vm Hm y = Vm V T
m AVm y.
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Here Q := Vm V T
m satisfies Q2

= Q = QT and rangeQ = Km . Thus Q ∈ RN×N is the orthogonal projection of
RN onto Km . If one takes an arbitrary Vm y ∈ Km , applies A and then the projection Q, then one obtains Vm z ∈ Km ,
where z = Hm y. In other words, the transformation

y → z = Hm y

expresses the action of A on Km , followed by Q, in the basis v1, . . . , vm .

The least-squares problem
First let y ∈ Rm be arbitrary and set

x = x0 + Vm y.

The residual of x is

b − Ax0 − AVm y = r0 − AVm y

= r0 − Vm+1 H̃m y.

We want to solve the minimization problem. Find y ∈ Rm with

|r0 − Vm+1 H̃m y| = min. (2.23)

Set β = |r0|. Since v1 = r0/β is the first column of Vm+1 we have

r0 = βVm+1e1, e1 = (1, 0, . . . , 0)T
∈ Rm+1.

Therefore,

r0 − Vm+1 H̃m y = Vm+1(βe1 − H̃m y).

Finally, since the columns of Vm+1 are orthonormal, we have

|Vm+1(βe1 − H̃m y)| = |βe1 − H̃m y|.

Consequently, the minimization problem (2.23) is equivalent to: find y ∈ Rm with

|βe1 − H̃m y| = min where β = |r0|. (2.24)

This least-squares problem can be solved as usual via Q R-factorization of H̃m . Thanks to the Hessenberg structure
of H̃m the number of floating point operations is O(m2). Further savings are possible if one does not factorize the
successive matrices H̃1, H̃2, . . . independently, but implements an updating process to get the Q R-factorization of
H̃m+1 from that of H̃m . Only a single Givens rotation with O(m) floating point operations is required. For details we
refer to [25] where this updating process is implemented.

Preconditioning
The convergence of GMRES applied to a system Ax = b may be slow. To accelerate convergence of the iteration

one often transforms the given system to an equivalent one by so-called preconditioning. The general ideas are well-
known. Nevertheless, a theoretical analysis is typically not possible, and the design of good preconditioners remains
a field of numerical analysis that requires experience and testing.

Let us first describe left preconditioning. If M ∈ RN×N is nonsingular, one replaces the given system Ax = b by

M−1 Ax = M−1b (2.25)

and applies GMRES to (2.25). The matrix M−1 is not formed explicitly. Instead, in the modified Gram–Schmidt
process given above, where the assignment v = Av j must be replaced by v = M−1 Av j , one solves the linear system

Mv = Av j (2.26)

for v. To obtain a meaningful algorithm it is necessary that (1) the system Mv = Av j is much easier to solve than the
given system Ax = b; (2) the GMRES iteration for M−1 Ax = M−1b converges faster than the GMRES iteration for
Ax = b.
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Fig. 1. Sea-surface height (SSH) from a preliminary iPOP run demonstrating the capability of iPOP to take arbitrarily large time steps. In practice,
the time step is chosen to resolve only the processes of interest in the study. The iPOP time step is about 800 times that used in POP and other
traditional OGCMs.

Second, right preconditioning proceeds as follows. The given system Ax = b is replaced by

AM−1ξ = b for ξ = Mx . (2.27)

In the modified Gram–Schmidt process the assignment v = AM−1v j is carried out by first solving Mw = v j for w

and then computing v = Aw.
In practice one often applies left and right preconditioning together. If M1 and M2 are nonsingular matrices, then

the given system Ax = b is replaced by

M−1
1 AM−1

2 ξ = M−1
1 b with ξ = M2x .

In the modified Gram–Schmidt process the assignment

v = M−1
1 AM−1

2 v j

is carried out as follows: (1) solve M2w = v j for w; (2) compute Aw; (3) solve M1v = Aw for v.

GMRES with restart
For simplicity, let us assume that GMRES is applied without preconditioning. (Similar considerations hold for the

preconditioned iteration.) After the vector ym ∈ Rm is computed by solving the least-squares problem (2.24), the
vector

xm = x0 + Vm ym

(see (2.20)) can be formed to yield the current approximation of the solution of Ax = b. Here the matrix Vm has m
orthonormal columns, v1, . . . , vm , each of length N . Since N is typically very large, the storage of the vectors v j is
prohibitive for larger m. To save storage it is common to restart GMRES after a rather small number of iterations,
e.g., after m = 20 iterations. One can restart at the last computed approximation, xm .

2.3. Example computations

To illustrate a first use of iPOP, Fig. 1 shows the sea-surface height (SSH) in an idealized configuration of
continental geometry and wind forcing. This flow was computed at a time step that is roughly 800 times larger
than with the traditional OGCMs—presently POP. While the flow is qualitatively similar to that obtained with the
much smaller time step, the differences will be the subject of further study. Table 1 gives details about the full range
of time integration schemes that we have used for this problem. Note that the time step is measured in terms of the
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Table 1
Crank–Nicholson (NK) is the time stepping method of choice in iPOP, and semi-implicit is the method of choice in POP

Integration scheme
√

gH 1t
1x vis CFL adv CFL

2nd order Runge–Kutta 0.49 0.07 0.006
Explicit-leapfrog 0.53 0.07 0.006
Semi-implicit 4.40 0.60 0.05
Semi-implicit (Robert) 8.5 1.8 0.1
Backward Euler (NK) 176 24 2.0
Crank–Nicholson (NK) 3520 480 40

Note therefore, that the flow in Fig. 1 was run with an iPOP time step about 800 times larger than the POP time step.

Fig. 2. Contours of simulated sea-surface height in the North Atlantic. The closed contours in the region to the East of the south-eastern US is the
subtropical gyre and its western boundary marks the Gulf Stream. The wind-driven circulation is simulated here on a 0.2◦ grid using a shallow
layer representing the upper ocean overlying a deep quiescent layer representing the ocean below the thermocline, and with a fully implicit time
stepping scheme. Reanalyzed, time-averaged, steady winds are used.

Courant–Friedrichs–Levy (CFL) number, which is a measure of the stability limit for explicit schemes. While in the
traditional OGCMs, neither the advective CFL number nor the viscous CFL number can be greater than unity, they
are seen to be vastly greater than unity in the new scheme.

As an example of a case with realistic continental geometry and wind forcing, Fig. 2 shows the SSH in the North
Atlantic. In that figure, contours of simulated sea-surface height (in meters) are shown, with continuous contours
indicating elevation and dashed–dotted contours indicating depression from reference. The closed contours in the
region to the East of the south-eastern US is the subtropical gyre and its western boundary marks the Gulf Stream.
The wind-driven circulation is simulated here on a 0.2◦ grid using a shallow layer representing the upper ocean
overlying a deep quiescent layer representing the ocean below the thermocline. Reanalyzed, time-averaged, steady
winds are used for the forcing. While Fig. 2 was produced using a time step of a day, corresponding to a gravity wave
CFL number of about 184, and an advective CFL number of about 4, this problem was also run using much longer
time steps which are discussed further in the section on preconditioning.

Finally, as an example of a case with all ingredients that go into a fully-realistic OGCM, Figs. 3 and 4 show
the sea-surface temperature and a meridional cross-section of temperature through the Pacific and Indian oceans,
respectively. In this case, the convective adjustment procedure was applied explicitly after the dynamics was fully-
implicitly evolved over a time step. Results shown in Figs. 3 and 4 were obtained with a time step about 25 times larger
than in traditional OGCMs. However, to run at much longer time steps like a 1000 times longer than in traditional
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Fig. 3. The sea-surface temperature from iPOP in a realistic configuration using actual topography and continental geometry, initial Levitus
temperature and salinity, observed annual averaged wind stress and restoring boundary conditions at the surface for temperature and salinity.
The iPOP time step used here is about 25 times that in other OGCMs.

Fig. 4. A meridional cross-section of temperature through the Pacific and Indian oceans (same run as in Fig. 3). The structure of the thermocline
(lighter waters of the upper ocean in the equatorial, tropical and subtropical oceans) is properly represented.

OGCMs the treatment of convective adjustment within the Newton–Krylov framework needs to be investigated further.
This is because the density field can change significantly over such a time step.

Scalability to massively parallel machines is assured by the Jacobian-free nature of the method. The type of
communication required closely mimics that found in POP: predominantly nearest neighbor to update ghost cells
and a small amount of collectives for global sums required during the iterations. Thus we expect iPOP will have
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Fig. 5. Parallel performance: perfect scaling is represented by the lowest straight line. Actually realized parallel scaling on an HP Alpha cluster is
represented by the middle line and on an SGI Ultrix by the upper line.

scalability similar to POP. We give scalability results for iPOP on leading computational platforms (HP Alpha cluster
and SGI Altrix) in Fig. 5. The results show good parallel scaling obtained on both platforms.

3. Remarks on preconditioning

The efficiency of iPOP depends on effective preconditioning. The strongly-coupled, multi-scale dynamics of ocean
circulation render the linear systems in iPOP stiff. We are developing preconditioners based on physical processes
like gravity waves, planetary geostrophy, and advection–diffusion to solve these systems efficiently. This is a tough
problem that requires cross-disciplinary expertise and collaborations. The gravity wave preconditioner is complete
and tested, while the latter ones require further work. Here we briefly describe the formulation of the gravity-wave
preconditioner.

In the semi-implicit formulation, the integration of the model over one time step may be thought of as solving a
linear system for Un+1:

G(Un+1) ≡
Un+1

− Un

1t
− g(Un+1, Un) = 0. (3.1)

Here g depends linearly on Un+1; the implicit terms in g result from linear gravity wave dynamics whereas all the other
terms in the governing equations, including the nonlinear terms, are updated explicitly. Consequently, g(Un+1, Un)

has the form

g(Un+1, Un) = P0Un+1
+ C(Un) (3.2)

with a constant matrix P0.
On the other hand, the second-order, fully-implicit, Crank–Nicholson time step would correspond to solving a

nonlinear system of the form

F(Un+1) =
Un+1

− Un

1t
−

f(Un+1) + f(Un)

2
= 0 (3.3)
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Fig. 6. Speed-up is defined as the time per Newton iteration using Np processors, divided by the time for a single processor using PCG. Since
LAMG is more efficient than PCG, we obtain a speed-up even for the single processor job just by switching from PCG to LAMG.

using the Newton–Krylov iterations. This would involve solving linear systems of the form (2.15), written here for
convenience as

J (xk)δxk
= −F(xk); x∞

= Un+1. (3.4)

Since the semi-implicit scheme G effectively allows us to take time steps which exceed the gravity wave CFL
restriction, a natural question is how one may use G as a gravity wave preconditioned for F. Here we introduce such
a gravity wave preconditioner as a right preconditioner as in (2.27), where the above equation may be rewritten as

J (xk)P−1Pδxk
= −F(xk); x∞

= Un+1. (3.5)

Since G can be considered an easy-to-invert approximation to F, it is reasonable to assume that the Jacobian of G will
be a reasonable preconditioner for J .

In light of this, we take

Pi j =
∂Gi

∂x j
. (3.6)

Since G is itself linear in Un+1 it can be written in the form

G(Un+1) = (I −A)Un+1
+ b(Un). (3.7)

In this form the Jacobian is evident and thus the preconditioner P is given by

P = I −A. (3.8)

Before we computationally examine the use of the above gravity-wave preconditioner, we briefly digress to
consider two different methods of inverting the above linear operator. The traditional method for solving the elliptic
problem resulting from linear gravity waves is the Preconditioned Conjugate Gradient (PCG) method. For example,
this is the method of choice in POP. However, this method has poor scalability and efficiency and its applicability
is limited to symmetric operators. Hierarchical solution methods may provide a more robust, efficient, and scalable
alternative. To study this, we have interfaced iPOP with the Los Alamos Algebraic Multigrid (LAMG) package to
solve the linear elliptic equation that results from the gravity wave preconditioner. Fig. 6 shows speed-up as a function
of the number of processors Np, where speed-up is defined as the time per Newton iteration using Np processors
divided by the time for a single processor using PCG. It shows that not only does algebraic multigrid scale better at
larger processor count, but also that its convergence is better even at small processor counts.

Returning to a computational examination of the gravity wave preconditioner, Fig. 7 shows the effectiveness of the
gravity wave preconditioner in reducing the number of GMRES iterations required. The lower line corresponds to the
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Fig. 7. The impact of the gravity wave preconditioner on the efficiency of the linear solution in the Newton–Krylov methodology. The upper line
shows the number of iterations of GMRES required without the gravity wave preconditioner and the lower line with the gravity wave preconditioner.
(GMRES is a costly component of the present scheme. Note, however, that this figure does not account for the cost of the preconditioner.) In
particular, considering the range between CFL numbers of 1 and 30, while the number of iterations without the preconditioner is continuously rising
with CFL number, it stays almost constant with the preconditioner. The subsequent rise of the lower curve at larger CFL numbers is indicative of
the lack of preconditioning of other physical processes.

number of GMRES iterations with the preconditioner while the upper line corresponds to computations without the
preconditioner. In particular, considering the range of CFL numbers between 1 and 30, while the number of iterations
without the preconditioner is continuously rising with CFL number, it stays almost constant with the preconditioner.
The subsequent rise of the lower curve at larger CFL numbers is indicative of the lack of preconditioning of other
physical processes. Note, however, that while GMRES is a costly component of the present scheme, this figure does
not account for the cost of the preconditioner. The setup corresponds to the North Atlantic case considered earlier.

4. Conclusion

In the present article we have dealt with computational aspects of time integration in OGCMs. This is complicated
by the fact that ocean circulation engenders dynamics on a very wide range of time scales that interact with each
other. A simple example of this is the mediation by inertia-gravity waves, a fast process, of the change from one
geostrophically balanced (slow) state to another. Justified by scale analysis and limitations of available computational
resources, it is presently accepted that the hydrostatic primitive equations (HPE) constitute a reasonable framework
to study the dynamics of ocean circulation at scales larger than about ten kilometers. Notwithstanding, such an
elimination of even faster dynamics using the Boussinesq and hydrostatic approximations, accurate time integration of
HPE is still difficult, particularly on the climate (centennial to millennial) time scales, and at high spatial resolutions.

Present day OGCMs typically use semi-implicit time integration, wherein only the gravity waves are treated
implicitly, in conjunction with possible “distorted-physics” techniques for climate studies. Such approaches require
ad hoc splitting of the HPE system and are likely to introduce significant distortions. An obvious alternative to this
approach is a fully-implicit time integration scheme. It is also well-recognized that the problem with this approach
is the need to efficiently solve large nonlinear (algebraic) systems of equations. In fact, historically, solving this
nonlinear system has been considered as too difficult and/or too expensive, and this is what has led to the development
of the time-split and operator-split approaches presently in use. However, in the intervening decades available
computational resources and algorithmic advancements have evolved to render this problem somewhat more tractable.
Algorithmically, among these newer approaches are nonlinear multigrid methods and Jacobian-free Newton–Krylov
methods. We have successfully implemented, in a version of POP, fully-implicit time-integration schemes based on
the latter JFNK methods. In this article, we have mostly described this implementation and then gone on to verify
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it using a variety of test cases. Considering the unified temporal treatment of the different terms in the governing
equations in our approach, which is in contrast to present day OGCMs, we hope to demonstrate possible numerical
accuracy advantages of our approach in a future article.

While arbitrarily long time steps are now a possibility in the model, by far the most pressing issue before the
model can be competitive at long time steps is the need to efficiently solve possibly poorly-conditioned sparse, but
large, linear systems in a scalable fashion. As a first step in this direction, we have implemented the gravity wave
preconditioner that works well up to gravity wave CFL numbers of about 60. For the method to be efficient at even
longer time steps, other physical processes have to be preconditioned as well. This is an area of ongoing research.
Looking further ahead to when the time step in the model can be extended to time scales on which thermodynamical
processes relax, the issue of convective adjustment (presently handled explicitly) will have to be revisited.
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