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ABSTRACT

The dynamics of an idealized wind-driven double-gyre circulation in an ocean basin are studied from a
dynamical systems point of view in an effort to better understand its variability. While previous analyses of this
circulation have mostly dealt with local bifurcations of steady states and limit cycles, this study demonstrates
the importance of considering global bifurcations as well. In one case, a coherent picture of the global dynamics
spanning a range of parameters from where there are only stable steady-state solutions to where there is chaotic
eddy shedding is presented. A simple but novel use of power spectra along with dynamical projections of the
dynamics suggests that just beyond the regime in which there are only stable steady states, the system exhibits
a complicated global bifurcation known as the ‘‘Shilnikov phenomenon.’’

1. Introduction

The world oceans are an important constituent of our
climate system. They account for a significant fraction
of the poleward heat transport (e.g., see Gill 1982) and
are the main sources of long timescales in climate dy-
namics. The dynamics of ocean circulation are, there-
fore, expected to play a major role in climate variability.
However, even the response of the oceans themselves
to specified mechanical and thermodynamic forcings—
wind-driven circulation and thermohaline circulation re-
spectively—is, in general, very complicated. While sim-
ple models are useful in understanding various individ-
ual features of this complicated response, realistic de-
scriptions invariably require the use of ocean general
circulation models. The downside of OGCMs, however,
is their immense complexity resulting in part from the
very large range of spatial and temporal scales and the
large number of different physical processes involved.

The feature of ocean circulation of interest to us in
this article is its variability. To reproduce the observed
variability of ocean circulation in models requires, be-
sides using realistic OGCMs, an extensive tuning of
parameters and parameterizations of the models. On the
other hand, even simple models are capable of signifi-
cant variability [see, e.g., chapter 2 in Pedlosky (1996)
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and references therein; McCalpin and Haidvogel (1996);
Nadiga and Holm (1997)]. While it would be almost
hopeless to carry out a systematic analysis of the origin
of variability in the OGCMs, we think that such an
attempt can now be made at least for some of the simple
models. Although it is not clear to what extent the results
of such analysis will carry over to OGCMs, study of
the simple models is a logical place to start, and may
shed light on some of the fundamental dynamical mech-
anisms involved.

Simple models that have been particularly useful in
understanding various aspects of the dynamics of mid-
latitude wind-driven ocean circulation are those that as-
sume the hydrostatic and possibly also the quasigeo-
strophic (QG) approximation, simplify the vertical rep-
resentation to a few layers, idealize the domain into a
closed rectangular basin, and idealize the wind forcing
[see, e.g., chapters 2 and 3 in Pedlosky (1996) and ref-
erences therein]. In this article, we consider a commonly
studied QG model of this type wherein the upper ocean
is represented by a single active layer overlying a deeper,
quiescent, ‘‘half’’ layer. The most serious shortcoming
of such a model is that it does not support baroclinic
instability; our justification for studying it is that the
variability even for this case is not well understood.

Considering a barotropic model of the subtropical
ocean gyre circulation forced by steady wind stress,
computations performed by Bryan (1963), for the first
time demonstrated a transformation of flow from a clas-
sical Stommel solution to one with an inertial recircu-
lation to unsteady solutions as the degree of nonlinearity
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FIG. 1. Layout of the model.

was increased. Vernois (1966), using a different dissi-
pation operator, then pointed out a different transfor-
mation of steady states as the degree of nonlinearity
increased, with more Fofonoff-like solutions emerging
at large nonlinearities. These works were followed by
various other investigations that noted the spontaneous
generation of mesoscale variability in ocean circulation
driven by steady winds at moderate values of nonlin-
earity. It was then pointed out by Holland and Haidvogel
(1981), in the context of a baroclinic QG model, that a
lower-frequency variability (than that of the mesoscales)
appears at still higher values of nonlinearity. Le Provost
and Verron (1987), by considering unsteady computa-
tions of the barotropic double-gyre circulation, identi-
fied two types of destabilization—meandering of the
midlatitude eastward jet and Rossby wave radiation
from the westward return flow. Moro (1988), consid-
ering computations of steady states, but with asymmetric
double-gyre wind stress, demonstrated the possibility of
stable standing meanders in the midlatitude jet.

However, detailed studies of variability in simple
models of wind-driven ocean circulation began only
more recently with the work of Jiang et al. (1995), when
they showed the presence of multiple equilibria and pe-
riodic and aperiodic solutions in the context of a double-
gyre circulation driven by symmetric wind stress and
using a reduced-gravity shallow water model. (Hence-
forth, when we refer to the double-gyre circulation, the
reader should assume that we are actually referring to
an idealized realization of it in a simple model rather
than its more realistic counterparts and, if we do not
explicitly specify it, that it is driven by symmetric wind
stresses.) At about the same time, Ierley and Sheremet
(1995) demonstrated the presence of multiple equilibria
in a barotropic single-gyre QG model, Cessi and Ierley
(1995) mapped the (antisymmetric and symmetry-
breaking) steady states of a barotropic QG double-gyre
model as a function of frictional and forcing parameters
and studied their stability, and Speich et al. (1995) did
the same for the model used in Jiang et al. (1995). (Note
that while the steady states of the barotropic QG case

with no quiescent deep layer are the same as those for
its reduced-gravity counterpart, the time-dependent dy-
namics of the two are different.)

McCalpin and Haidvogel (1996), on the other hand,
integrated a reduced-gravity QG model of the double-
gyre circulation to study its low-frequency variability
and suggested that the low-frequency variability that
they observed was associated with irregular transitions
among three preferred states—a high energy state with
the midlatitude jet penetrating deep into the basin, a low
energy state with a weakly penetrating jet, and an in-
termediate energy state. [These preferred states have
been linked to the unstable steady states of that model
by various authors (e.g., Primeau 1998; Scott and Straub
1998).] While Dijkstra and Katsman (1997) examined
bifurcations of steady states and formation of limit cy-
cles for the reduced-gravity and two-layer QG models
of double-gyre circulation, Primeau (1998) mapped out
the bifurcation of steady states for a barotropic QG mod-
el but with a different dissipation operator than used in
Cessi and Ierley (1995). This was followed by the Ber-
loff–Meacham program, which considered, rather ex-
tensively, the low-dimensional dynamics of the single-
gyre circulation using both barotropic and baroclinic QG
models (Berloff and Meacham 1997; Meacham and Ber-
loff 1997; Berloff and Meacham 1998). In this context,
they identified a sequence of Hopf bifurcations giving
rise to an unstable toroidal attractor that, then, gives
way to a strange attractor. Berloff and McWilliams
(1999) consider the reduced-gravity and two-layer QG
models of double-gyre circulation with both symmetric
and asymmetric wind forcing. In each of the cases, they
find a primary (intermonthly) and a secondary (inter-
annual) Hopf bifurcation and then go on to characterize
the differences in the low-frequency variability of their
different cases at higher nonlinearities using empirical
orthogonal functions. Various aspects of the double-gyre
circulation are considered in a recent study by Ghil et
al. (2000, manuscript submitted to J. Fluid Mech.). Fi-
nally, in a recent article (published since this work was
completed), Meacham (2000) in trying to explain large
amplitude, low-frequency variability of aperiodic so-
lutions in a barotropic double-gyre circulation, associ-
ated it with homoclinic bifurcations.

Thus, with the exception of Meacham (2000), all the
low-dimensional dynamics that have been identified in
the context of wind-driven circulation are local bifur-
cations of steady states and periodic solutions, and a
comprehensive study of the role of more complicated
solution types is still lacking. We note that a possible
special solution in the problem under consideration is
(what is called in the nonlinear dynamics literature as) a
‘‘homoclinic orbit’’—which in the present context would
mean a time-dependent double-gyre solution that tends
asymptotically to a steady-state solution (discussed pre-
viously) in both forward and backward time. (An orbit
would be called ‘‘heteroclinic’’ if it connected two dif-
ferent asymptotic solutions.) Such an orbit provides the
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FIG. 2. Homoclinic orbits to a saddle-focus for (a) a single homoclinic and (b) a pair of
homoclinics in the presence of inversion symmetry.

fundamental recurrence mechanism that makes possible
the repeated ‘‘stretching and folding’’ of phase space that
is characteristic of dynamical chaos. Furthermore, it is
now well recognized that bifurcations involving homo-
clinic orbits can act as ‘‘organizing centers’’ for the dy-
namics of low-dimensional dynamical systems. That is,
these solutions often play a fundamental role in the bi-
furcation of new solutions as parameters are varied and
a crucial role in the onset of chaotic behavior. It is also
easy to imagine how the recurrent structure of a homo-
clinic orbit can provide a setting wherein new periodic
solutions can be created—bifurcating from the homo-
clinic orbit as parameters are varied. For examples of
homoclinic and hetroclinic orbit as they occur in highly
truncated (ordinary differential equation) models of geo-
physical flows, see Ghil and Childress (1987).

In this paper we report evidence that suggests that
the dynamics of the double-gyre circulation (in a re-
duced-gravity QG model) just beyond the regime in
which there are only stable equilibria (steady states)
exhibit a complicated global bifurcation, which is
known in the literature as the ‘‘Shilnikov phenomenon’’
(SP). We deduce this by comparing power spectra and
dynamical projections of the double-gyre circulation
with known characteristics of the SP. The SP, which was
first partially described by Shilnikov (1965), and later
studied by Glendinning and Sparrow (1984), Gaspard

et al. (1984), Tresser (1984), and others, involves the
collision of limit cycles with saddle-foci equilibria in
phase space creating homoclinic orbits and other dy-
namical structures. Thus, while previous bifurcation
analysis of the double-gyre circulation have all involved
only local bifurcations, to the best of our knowledge
our evidence for SP seems to be the first instance of
considering a global bifurcation in this context.

As has been shown in the previous studies, when
nonlinearity is initially increased in the symmetrically
forced double-gyre circulation, antisymmetric steady
states give way to asymmetric steady states and then to
periodic solutions through a series of local bifurcations.
Moreover, in the context of the b-plane approximation,
it is physically easy to see that the dynamics of the
linearization about any one of the steady-state solutions
would involve Rossby waves. In particular, considering
the antisymmetric steady-state solution branch beyond
the first (codimension one, pitchfork) bifurcation when
it loses stability, the simplest picture of the dynamics
of the linearization about that solution would be that of
a saddle focus, with Rossby waves comprising the two-
dimensional stable oscillatory mode. It is then easy to
imagine the periodic solutions (asymmetric limit cycles,
after they are possibly involved in other local bifurca-
tions) colliding with this saddle focus, providing the
basic framework necessary for SP.
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FIG. 3. Periodic orbits in the presence of inversion symmetry for (a) a pair of asymmetric orbits,
and (b) a single symmetric orbit.

Much of the work on Shilnikov chaos has been in
the three-dimensional (phase space) setting, and it is
this three-dimensional theory that we consider here. The
relevance of such a theory to the double gyre arises
from the fact that, although the system of partial dif-
ferential equations (pde) describing such a system (e.g.,
the reduced-gravity QG model) is capable, a priori, of
exhibiting an arbitrarily large number of degrees of free-
dom in its dynamics, dissipative mechanisms suppress
instabilities at wavenumbers above a threshold. This
threshold increases with increasing wind stress, allow-
ing finer-scale structure with more degrees of freedom
to emerge as forcing increases. In the regime considered
in this paper, the wind stress is small enough that only
a few instabilities are present in the time-asymptotic
dynamics and these involve only a small number of
degrees of freedom. For many pde systems with driving
and damping, such as the forced two-dimensional Na-
vier–Stokes equations in a bounded domain, the finite
dimensionality of the asymptotic dynamics can be made
rigorous via the concept of inertial manifolds (Con-
stantin et al. 1985). While such a demonstration is likely

to be possible for the double-gyre circulation, we remark
that the question of the exact effective dynamical di-
mension for a pde in a given parameter regime is often
a difficult question, and, in practice, dynamicists tend
to rely on numerical measurements such as Lyapunov
dimension instead of rigorous theory. Although we do
not fully address this question in this article, there do
appear to be some interesting and subtle aspects to the
question of dynamical dimension for the double-gyre
circulation, which we discuss further in section 6.

Finally, in the context of using a double-gyre wind
forcing, we note that although the details of bifurcation
diagrams are bound to be dependent on the exact form
of the dissipation operator and the associated boundary
conditions, the possibility of ‘‘internal compensation’’ is
expected to reduce such a dependence. Internal compen-
sation is the process wherein 1) the potential vorticity of
a fluid parcel is changed by input of wind stress curl in,
say, the subtropical gyre, 2) the fluid parcel is advected
across the zero wind stress curl line to the subpolar gyre,
and 3) the potential vorticity of that fluid parcel is reset
in part by input of wind stress curl of the opposite sign
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by virtue of being in the subpolar gyre (see, e.g., Marshall
1984; Pedlosky 1996; Primeau 1998, Greatbatch and Na-
diga 2000). The inviscid nature of this transport mech-
anism allows a weak dependence of the dynamics on
dissipative processes in a weakly dissipative regime. It
is, however, clear that once symmetry is broken the im-
portance of dissipative processes has to reemerge. For
example, it is perhaps because of internal compensation
that low-frequency variability of the kind found by
McCalpin and Haidvogel (1996) using a QG model per-
sists in the primitive equation model studies of Spall
(1996), the equilibria found by Jiang et al. (1995) in the
shallow-water model are perturbed versions of those
found by Cessi and Ierley (1995) in the corresponding
QG model, and the time-mean circulation of turbulent
double-gyre simulations in Greatbatch and Nadiga (2000)
are practically the same (their Figs. 4 and 5) when either
free-slip or super-slip boundary conditions are used. It is
also in the same vein that Scott and Straub (1998) point
out that certain aspects of their nonsymmetric solutions
appear insensitive to (poorly known) frictional parame-
ters, when these parameters are smaller than certain crit-
ical values. In such cases, they point out that the flow
organizes itself in such a way as to reduce the input of
energy from the wind forcing when friction is reduced
(also see Greatbatch and Nadiga 2000).

An outline of the rest of the paper is as follows. In
section 2, we describe a simple model of the double-
gyre circulation that we use, including details of the
setup and the numerical integration scheme. In section
3, we briefly introduce the dynamical concepts used in
this article and give a brief sketch of the Shilnikov phe-
nomenon. After explaining the data types that we use
in the analysis of the double-gyre circulation in section
4, we present evidence for the SP in the double-gyre
circulation in section 5. Section 5 also considers two
other better understood examples to validate our meth-
odology. In section 6, we briefly discuss the issue of
dimension of the double-gyre circulation in relation to
exact mass conservation (Kelvin wave parameteriza-
tion) and conclude in section 7.

2. The reduced-gravity quasigeostrophic model

We consider the reduced-gravity QG model in vor-
ticity form to study the nonlinear dynamics of an ide-
alized subtropical/subpolar gyre system. In this descrip-
tion of large-scale circulation, a single active layer of
water of constant density r0 and variable thickness h,
representative of the upper ocean, overlies an infinitely
deep and quiescent bottom layer of density r0 1 Dr.
The interface between these two layers, across which
there is no mass transport, models the behavior of the
permanent thermocline. We choose the equilibrium
depth of the upper layer to be 1000 m, its density r0 to
be 1022 kg m23, and the density difference between the
upper and lower layers, Dr, to be about 3.3 kg m23.
We consider a rectangular model domain extending

1000 km in the east–west (x) direction and 2000 km in
the north–south (y) direction, centered at 308N. The
setup of the domain is shown in Fig. 1. The Coriolis
parameter is assumed to vary as f 5 f 0 1 by (b-plane
approximation), where f 0 5 2V sinu 5 7.3 3 1025 s21

corresponds to a latitude, u, of 308 and b the latitudinal
variation of rotation is assumed to be 2 3 10211 m21

s21. The upper-layer flow is then described by

2]z f ]c ]c02 1 J[c, z] 1 b
]t g9H ]t ]x

1
5 = 3 t 1 D, (2.1)

r H0

where c is the streamfunction,

2z 5 ¹ c

is the relative vorticity, J[ , ] is the Jacobian operator
given by

]c ]z ]c ]z
J[c, z] 5 2 1 ,

]y ]x ]x ]y

t is the wind stress forcing, and D represents dissipation.
The quantity g9, the reduced gravity, is related to the
gravitational acceleration g by

Dr
g9 5 g.

r0

The streamfunction c is constant along the boundary to
ensure that there is no flow normal to the boundary, but
this constant can have a time dependence:

c 5 c(t).B (2.2)

The wind stress t is chosen to have an idealized double-
gyre structure (see Fig. 1) given by

y
t (x, y) 5 t cos p , 0 ,01 1 2 2L

where t0 is the magnitude of the horizontal wind stress
(in N m22). Note that with this wind stress, which is
symmetric about y 5 0, the dynamics of the double-
gyre circulation is invariant under the transformation

c → 2c, y → 2y. (2.3)

The dissipation operator D is chosen to be a combination
of biharmonic mixing and Rayleigh damping of mo-
mentum, resulting in

4D 5 2A z 2 A ¹ z,0 4

following Marshall (1984), to emphasize the importance
of the eddy field in transporting potential vorticity across
the zero wind stress curl line. While the highly scale
selective biharmonic mixing allows for an effective re-
moval of small-scale enstrophy, which results from non-
linear cascade processes, the scale insensitive Rayleigh
damping allows for an equilibration of the energy of the
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system. For biharmonic friction, we choose free-slip
boundary conditions:

2] z
z 5 0 and 5 0,

2]n

where n is normal to the boundary.
A nondimensionalization of (2.1) using a length scale

corresponding to the horizontal extent of the domain L,
a velocity scale U given by the Sverdrup relation

pt0U 5 ,
r HbL0

and a timescale corresponding to the Sverdrup gyre-
turnaround time L/U allows (2.1) to be written as

]q A A0 4 41 J[c, q] 5 sin(py) 2 z 2 ¹ z, (2.4)
5]t bL bL

where q is the potential vorticity
2L

q 5 Roz 2 c 1 y,
2LR

Ro is the Rossby number

U
Ro 5 ,

2bL

and LR is the Rossby radius of deformation

g9H
L 5 .R 2! f 0

Finally, for convenience, we represent the inertial scale,
, as a percentage of the horizontal domain size LÏU/b

by di:

d 5 100ÏRo. (2.5)i

The midlatitude of the basin is now at y 5 0, the
northern and southern boundaries are at y 5 61, re-
spectively, and the western and eastern boundaries at x
5 0 and x 5 1, respectively (see Fig. 1). We choose to
vary the Rossby number, or in effect the magnitude of
the wind stress, in our experiments for chosen values
of dissipation coefficients. While we have experimented
with various values for the dissipation coefficients and
correspondingly different ranges of wind stress mag-
nitude, for the case we consider in detail here, the Ray-
leigh damping timescale was about 193 days, the value
of A4 was 2 3 1010 m4 s21 and the corresponding max-
imum wind stress magnitude was about 0.03 N m22.

Equation (2.4) is finite differenced using the Arakawa
discretization (Arakawa 1966; Salmon and Talley) for
the Jacobian and centered differencing for the spatial
discretization of the other terms. The time stepping is
carried out using a (nominally) fifth-order embedded
Runge–Kutta Cash–Karp scheme (Press et al. 1992). In
addition to providing adaptive time step control and
better time accuracy compared to the usual leapfrog time
discretization, this forward-time discretization obviates

the need for time filtering used to remove the compu-
tational mode in the leapfrog discretization. In all our
computations, we fix the resolution at 20 km or 0.02L.

3. Sketch of the Shilnikov bifurcation

In this section, we briefly sketch the Shilnikov phe-
nomenon, assuming only an elementary knowledge of
dynamical systems theory on the part of the reader.
[General introductions to dynamical systems may be
found in Wiggins (1990) and Guckenheimer and Holmes
(1983)]. We will describe the SP for three-dimensional
dissipative dynamical systems that possess complete in-
version symmetry. Such a symmetry corresponds to the
symmetry of the two gyres (2.3) (which our model pos-
sesses if and only if the domain and wind stress forcing
are both chosen to be symmetric). Our summary is large-
ly based on work by Glendinning and Sparrow (1984)
and a second paper by Glendinning (1984).

To illustrate the SP, consider a one-parameter dynam-
ical system of the form

ẋ 5 2lx 1 vy 1 P(x, y, z; R),

ẏ 5 2vx 2 ly 1 Q(x, y, z; R),

ż 5 rz 1 W(x, y, z; R), (3.1)

which has real parameters l, r . 0, and R (note that
the phase variables x, y, and z are not directly related
to the spatial coordinates of our double-gyre model). In
addition, P, Q, and W are assumed to be real-analytic
functions of x, y, and z that vanish along with their first
derivatives when x 5 y 5 z 5 0. The latter, along with
the absence of constant terms, implies that the origin is
a stationary point, that is, a solution trajectory with the
initial condition x(0) 5 y(0) 5 z(0) 5 0 which simply
remains fixed. The forms of the linear terms (involving
parameters r, l, and v) are such that the fixed point at
the origin is of ‘‘saddle-focus’’ type, with one positive
real eigenvalue, r, and a pair of complex eigenvalues,
2l 6 iv. The positive eigenvalue r implies the exis-
tence of a pair of one-dimensional unstable manifolds
on which phase trajectories depart from the origin at an
exponential rate r (e.g., the initial part of the homoclinic
trajectory in Fig. 2a). Likewise, the complex pair of
eigenvalues with negative real part ( 2 l 6 iv) implies
that the origin has associated with it a two-dimensional
stable invariant manifold on which solutions tend as-
ymptotically to the origin in a spiral with an exponential
radial contraction rate l and oscillation frequency v
(e.g., the latter part of the homoclinic trajectory sketched
in Fig. 2a).

A ‘‘homoclinic’’ orbit occurs if there is an intersection
of the stable and unstable manifolds. Such an intersec-
tion immediately implies the existence of a trajectory
that tends asymptotically to the fixed point as t → 6`.
We now assume that the functions P, Q, and W are
chosen such that a homoclinic of system (3.1) exists at
R 5 0. Symbolically, we represent this homoclinic so-
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FIG. 4. Four important local bifurcations. Solid and dashed lines
indicate stable and unstable solutions, respectively.

lution by (x, y, z) 5 (xh(t; r0), yh(t; r0), zh(t; r0)), where
r0 is any initial condition on this orbit at t 5 0. An
example of such a homoclinic to a saddle focus is il-
lustrated in Fig. 2a. Assume now also that P, Q, and W
are invariant under the inversion

(x, y, z) → 2(x, y, z), (3.2)

so that the system (3.1) possesses inversion symmetry.
This implies that any solution of (3.1) (x, y, z) 5 (x(t;
r0), y(t; r0), z(t; r0)) has associated with it another so-
lution (x, y, z) 5 (-x(t; 2r0), 2y(t; 2r0), 2z(t; 2r0)).
There is, therefore, another homoclinic obtained by in-
verting the first, and such a pair, which interleave one
another, is illustrated in Fig. 2b.

The dynamical consequences of such a pair of hom-
oclinics depend crucially on the ratio of the real parts
of the eigenvalues, which we denote by d:

l
d [ 2 . (3.3)

r

Shilnikov (1965) first showed that, when d lies in the
interval (0, 1), such homoclinic solutions are accompa-
nied at R 5 0 by the existence of a countable set of
periodic and an uncountable set of aperiodic solutions
(i.e., chaotic structure) in the proximity of the homoclinic.
Shilnikov also showed that in this case there is an infinite,
countable set of ‘‘multiple pulse’’ homoclinic solutions

in any R interval containing the origin, each having its
own sets of periodic and aperiodic solutions. Later work
by Glendinning and Sparrow (1984), Gaspard et al.
(1984), Tresser (1984), and Glendinning (1984) has par-
tially explained how this complicated state of affairs
comes about as the bifurcation parameter R is varied, and
it is these results that are most relevant presently.

Before describing these results, we first digress to
recap a few relevant details about bifurcations and pe-
riodic orbits:

R In the presence of inversion symmetry, we note that
a periodic orbit can always be classified as either
asymmetric or symmetric, with asymmetric orbits al-
ways occurring in pairs in which each member trans-
forms into the other under the inversion operation,
while symmetric orbits are unique. Both types of so-
lutions are illustrated in Fig. 3.

R Second, recall that there are four types of local bifur-
cations common to dynamical systems—the Hopf, sad-
dle-node, period-doubling, and symmetry-breaking bi-
furcations. Figure 4 illustrates the bifurcation diagrams
associated with these four. A brief description of these
follow. [For detailed explanations, see, e.g., Wiggins
(1990) and Guckenheimer and Holmes 1983].
+ In a (supercritical) Hopf bifurcation, the real parts

of the eigenvalues of a fixed point increase through
zero from negative to positive, causing the station-
ary point to lose stability and a stable periodic orbit
to be created. We shall see that this is the initial
mechanism by which periodic orbits appear in the
double-gyre circulation as di is increased.

+ In a saddle-node bifurcation, a pair of stationary
fixed points, or a pair of periodic orbits, one stable
and one unstable, are created simultaneously from
the same locus of phase space as R is increased or
decreased [this may be viewed as the collision and
subsequent annihilation of a saddle and a stable orbit
(or node) in reverse]. We shall see that this is the
mechanism by which multiple orbits first appear
following the initial Hopf bifurcation in our model
of the double-gyre circulation.

+ In a period-doubling bifurcation, which can involve
only asymmetric orbits, an asymmetric ‘‘parent’’ or-
bit loses stability and in the process a new stable
(and asymmetric) orbit is created having twice the
period of the original orbit. A period-doubling bi-
furcation is often followed by an infinite cascade of
period-doubling bifurcations that culminates in the
creation of a chaotic attractor. Only the first period-
doubling of such cascades will be indicated in the
bifurcation diagrams that follow (Figs. 5, 6, and 7).
It is by this route that chaos first appears in the
double-gyre circulation model.

+ Finally, a symmetry-breaking (or pitchfork) bifur-
cation occurs when a symmetric orbit loses stability,
creating a pair of stable asymmetric solutions. This
is the symmetric analog of a period-doubling bi-
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FIG. 5. Bifurcation diagram for a case I Shilnikov phenomenon (1/2 , d K 1), indicating the half
period of the symmetric principal orbit and the full period of the asymmetric principal orbit. The
principal orbits are asymptotic to a pair of homoclinic orbits at R 5 0.

FIG. 6. Bifurcation diagram for a case II Shilnikov phenomenon (1/2 K d , 1).
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FIG. 7. Bifurcation diagram for a case III Shilnikov phenomenon (d . 1).

furcation. A symmetry-breaking bifurcation is also
often followed by two infinite period-doubling cas-
cades begining with the two asymmetric solutions
created in the symmetry-breaking bifurcation. This
is also the mechanism by which asymmetric steady-
state solutions first arise in the symmetrically forced
double-gyre circulation.

We now discuss the Shilnikov phenomenon. Figures 5,
6, and 7 illustrate in an idealized way three basic bifur-
cation scenarios that have been discussed in the literature
by Glendinning and Sparrow (1984), Gaspard et al. (1984),
Tresser (1984), and Glendinning (1984). These describe
the so-called principal periodic orbits near a homoclinic
to a saddle focus in the presence of inversion symmetry
and correspond to the following regimes in the parameter
d: 1/2 , d K 1 (case I; Fig. 5), 1/2 K d , 1 (case II;
Fig. 6), and d . 1 (case III; Fig. 7). In particular, Figs.
5–7 illustrate the bifurcation histories of the principal pe-
riodic orbit families of both symmetric and asymmetric
kind. In these diagrams, we indicate the half period of the
symmetric orbits and the full period of the asymmetric
solutions in order to make the illustrations appear sym-
metric and easier to understand. We stress that not all the
periodic solutions that exist in the phase space are rep-
resented—in fact, for cases I and II the vast (in fact infinite)
majority are not. The principal orbits that are described,
however, play a fundamental role in the creation of many
if not most of the other periodic solutions that exist in the
vicinity of the homoclinic.

In Fig. 5, case I, we see that when R is much less
than zero that there is only a single, stable, asymmetric

orbit (which may, e.g., have been created in a Hopf
bifurcation). As R is increased, a series of (forward)
saddle-node bifurcations occurs, creating both asym-
metric solutions and symmetric solutions, until the pair
of homoclinics at R 5 0 is reached. Then, as R is in-
creased further, a sequence of (reverse) saddle-node bi-
furcations occur, until all that remains is a single, stable,
symmetric orbit. Note that in any open interval in R
that contains the origin there are an infinite number of
saddle-node, period-doubling, and symmetry-breaking
bifurcations. This entire process, that is, traversing from
a single asymmetric orbit to a symmetric orbit, in either
cases I, II, or III, is what we collectively refer to in this
paper as Shilnikov phenomenon.

Most importantly, note that although this process in-
volves an infinite number of forward and backward sad-
dle-node bifurcations, one may think of these bifurca-
tions as involving only two families of periodic orbits
by continuously tracing the curves of Figs. 5, 6, and 7.
These two families, the principal families, may be
thought of as having deformed into the pair of homo-
clinics at R 5 0. Of course, this interpretation requires
one to accept the idea that principal orbits can have
multiple representations at a given value of R.

It is thought that for values of R sufficiently close to
zero, each of the period-doubling and symmetry-breaking
bifurcations illustrated in Fig. 5 lies at the beginning of
a complete period-doubling cascade, which terminates in
the creation of a chaotic attractor. Moreover, as we have
mentioned previously, it is known that there is a count-
ably infinite set of multiple-pulse homoclinics in any R
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FIG. 8. Power spectra of the time-asymptotic circulations, calculated from the measured time series a(t), plotted
together as a function of the inertial scale. The spectra are color coded such that blue–black corresponds to the
lowest energy levels and yellow corresponds to the highest energy levels. The figure on the left uses a logarithmic
scale for the period, includes a larger range than the right-hand figure, and includes the zero-frequency component
along the top (for determining the symmetry of the circulation). The figure on the right uses a linear scale for the
period (to assist in identifying period doubling).

interval containing the origin, and each of these is thought
to possess all of the same associated structure we have
so far described for the ‘‘primary’’ homoclinic. Thus,
there exist an enormous number of solutions and bifur-
cations occurring that are not shown in Fig. 5. Obviously,
there is the possibility of great variability in the temporal
dynamics, including chaos, for case I (and case II).

The question of what attractors one is likely to see
in simulations, for example, chaotic attractors and/or
stable periodic orbits, depends a great deal on the spe-
cific example studied, and to the best of our knowledge
there are few general statements that can be made. Like-
wise, the exact bifurcation histories of individual so-
lutions created in the various period-doubling cascades
is also not known generally, although some specific case
histories for some orbits have been described in the
literature (see Glendinning and Sparrow 1984).

Figure 7 illustrates the bifurcation diagram for case
III SP; that is, d . 1. (Case II is addressed below.) In
this case, the bifurcation can be characterized as a ‘‘glu-
ing bifurcation’’; that is, a pair of stable asymmetric
solutions simply deform smoothly into a pair of hom-
oclinic solutions at R 5 0, and then a single, stable

symmetric orbit emerges as R is further increased (thus
the two asymmetric orbits appear to have been ‘‘glued’’
together). Note that this entire sequence involves only
three periodic orbits and one pair of homoclinic orbits,
and is thus vastly simpler than case I or II SP.

A possible bifurcation diagram for case II SP (1/2 K
d ,ø 1) is illustrated in Fig. 6. This diagram is based
on Fig. 3.8 of Glendinning and Sparrow (1984) (except
that we have added the symmetric orbit curve resulting
from the inversion symmetry), and it is this sort of sce-
nario that we believe is occurring in our reduced-gravity
QG model of double-gyre circulation. We emphasize,
however, that less is known about case II than for either
case I or III SP, and significant variations. Note that the
diagram resembles the diagram for case I very close to
the homoclinic; that is, there is an infinite series of
saddle-node bifurcations alternating on either side of
the homoclinic as the period of the principal orbits ap-
proach infinity. Farther away from the homoclinic are
pairs of outlying saddle-node bifurcations (sometimes
called ‘‘S-shaped bifurcations’’ in the literature), which
can form if some of the lower-period alternating saddle-
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node bifurcations are shifted to one side and away from
the homoclinic as d increases.

We remark that as d is increased through one, that is,
into case III SP, a finite number of these S-shaped bi-
furcations may persist, but the infinite set of alternating
saddle-nodes approaching the homoclinic orbits must
shrink and disappear. In general, as Glendinning and
Sparrow (1984) point out, the bifurcation diagram for
any system with variable d must continuously deform
as d is increased from the regime in case I to that in
case III, so the bifurcation diagram for case II will be
an interpolation between the first and third cases in Fig.
6; this concludes our brief sketch of the Shilnikov phe-
nomenon.

4. The use of spectra and phase projections for
study of bifurcation

In section 5 we present evidence for SP in the double-
gyre circulation using two types of dynamical data—
collections of power spectra plotted together, which pro-
vide us with a global picture of the dynamics as a func-
tion of di; and projections of individual dynamical tra-
jectories in phase space generated by ‘‘time-delay
embedding’’ of time series. In this section we explain
why these data types are useful and complementary, and
how they are obtained from the model.

The first data type—collections of power spectra—
consist of a series of power spectra calculated from time
series obtained from the model over an interval of in-
ertial scales di. (Recall that the inertial scale is the nat-
ural bifurcation parameter for this problem.) The par-
ticular quantity measured to produce these series is dis-
cussed at the end of this section. After the spectrum of
each series is computed, the spectra were plotted to-
gether as a two-dimensional color-mapped plot for the
entire collection with the inertial scale along the hori-
zontal axis and spectral component on the vertical axis
(e.g., see Figs. 8a and 8b). Note that, contrary to con-
ventional practice, the spectra in Figs. 8a and 8b were
plotted with temporal period on the vertical axis, instead
of frequency. This was done so that the resulting plots
can be directly compared with the SP bifurcation dia-
grams of Figs. 5, 6, and 7, which are also plotted with
temporal period on the vertical axis.

The advantage of this approach is that it essentially
furnishes us, at least in this particular case, with a bi-
furcation diagram for the dynamics of the system with-
out having to perform the difficult task of isolating and
tracking individual periodic solutions. The latter task is
often undertaken for systems of coupled ordinary dif-
ferential equations, but is extremely difficult to carry
out for partial differential equations and entails the use
of specialized and dedicated numerics.

Generally, power spectra of chaotic time series as-
sociated with chaotic evolution exhibit a broadband
structure, that is, energy at infinitely many frequencies,
making it hard to discern the frequency characteristics

of individual orbits. In the case studied in this paper,
however, the chaotic attractor of the double-gyre cir-
culation appears to be tightly compressed in phase space
around what we suspect are the principal orbits involved
in a SP bifurcation, causing the spectra to have a strong
component at the principal orbit’s frequencies that stand
out against the broadband background. The reason for
this compression appears to be because the parameter
d [see (3.3)] is close to one. This issue is further ex-
plored when the attractor projections are examined in
section 5.

The second type of data we consider in this paper are
three-dimensional projections of individual phase tra-
jectories (see Fig. 9). These provide us with direct in-
formation about attractor structure and are obtained by
the widely employed technique of time-delay embed-
ding of time series. That is, given a time series q(t)
derived from the system, we choose a delay time t and
plot the triplet [q(t), q(t 2 t), q(t 2 2t)] in three-di-
mensional phase space. If the dynamics that produced
the time series in the first place is also three-dimen-
sional, then this approach generally produces topolog-
ically accurate and very useful projections of the dy-
namics. For detailed discussions of time-delay embed-
dings, see, for example, Sauer et al. (1991).

We now take up the question of how time series were
obtained. At the very least, the time series should be
choosen such that they contain information about the
symmetry of the flow because the SP bifurcation dia-
grams with which we are to compare the model dynam-
ics display a change in orbital symmetry as a principal
characteristic. After some experimentation, we found
that summing the streamfunction c i(t) over two areas
located symmetrically about y 5 0 (the zero wind stress
curl line) seems to provide useful time series for our
purposes. Thus we define

L
a(t) 5 c(x , y )(t), 0 , x , |y | # . (4.1)O i i i i 4i

This quantity clearly contains information about the
symmetry of the flow—if a flow is symmetric about the
y axis and consists of two counterrotating mirror image
gyres, then this quantity is identically zero. If a flow is
asymmetric at any given time t, then a(t) will (typically)
be nonzero, and its sign will invert under the transfor-
mation y → 2y.

We remark that for the full range of parameters con-
sidered in this article, the maximal zonal penetration of
the separated midlatitude jet is about a quarter of the
horizontal extent of the domain and thus the measure
a(t) is biased to characterize behavior in the vicinity of
this midlatitude jet. The necessity for this bias is related
to some subtle aspects of mass conservation and the
effective dynamical dimension of the double-gyre cir-
culation. We defer discussion of this issue to section 6.
Finally we remark that all of the embeddings and the
power spectra presented in this paper were generated
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FIG. 9. Phase trajectories reconstructed from time delay embeddings of the time series a(t). The letters labeling each projection correspond
to the same labeled points in Fig. 8a. Projections a–h show asymmetric attractors for di , . In such cases, both left-hand and right-handhomdi

versions are present and map onto each other under the inversion symmetry of the system. Projections i–l display apparently symmetric
attractors for di . (there may be slight asymmetry here in some cases). The coordinate axes for the first two embeddings are not shownhomdi

since the origin of the three-dimensional phase space is far removed from the location of those trajectories.

from reasonably long samples (typically 8 gyre-turn-
around times) of a(t) measured after the flow was al-
lowed to relax (16 gyre-turnaround times) to an attractor.
All statements in the following are thus to be taken as
pertaining to the time-asymptotic dynamics of the dou-
ble-gyre circulation.

5. Evidence for Shilnikov bifurcations in the
double-gyre circulation

We begin by examining plots generated from 61 pow-
er spectra (generated from time series a(t) as described
in the foregoing section) for inertial scales extending
from di 5 1.25 to 1.55 in increments of 0.005. These
spectra are plotted together in Fig. 8a and 8b, and, as
we now describe, provide a global picture of the bifur-
cations occurring as the inertial scale is varied. Note
that the spectra in Fig. 8a are plotted with the base 10
logarithm of the period on the vertical axis so as to
compress the range in period and to make the structure
at smaller periods more visible. In addition, the spectral
energy at zero frequency (infinite period) is also in-

cluded in the topmost data point at the top of Fig. 8a
because, as we will describe later, this component con-
tains useful information about the symmetry of the flow.
Figure 8b, on the other hand, is plotted with a linear
period scale, and is included for ease in identifying pe-
riod-doubling relationships.

We first draw attention to the yellow curves beginning
in the lower left corners of Fig. 8a and 8b, beginning
at an inertial scale of about di 5 1.28. (The power
spectra are color-coded such that blue–black corre-
sponds to the lowest energy levels and yellow corre-
sponds to the highest energy levels.) These are labeled
‘‘fundamental (asymmetric branch)’’ and ‘‘harmonics’’
in the figure. At about di 5 1.374 the time series become
chaotic and the spectra become broadband. Interesting-
ly, the yellow curves appear to persist despite the broad-
band structure. This apparently occurs because, as we
will illustrate and discuss later, the chaotic attractor in
this regime is tightly compressed in phase space; that
is, it has the form of a slightly thickened periodic orbit,
so its power spectrum retains a clear characteristic fre-
quency.
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FIG. 10. The zero-frequency component of the spectrum of a(t) as
a function of the inertial scale. Note the sudden drop at around di 5

ø 1.395, indicating a sudden transition from asymmetric to sym-homdi

metric circulations. Also note the irregular behavior of this component
for di . , which may be due to local symmetry-breaking bifur-homdi

cations.

FIG. 11. Snapshots of the streamfunction at di 5 1.375 correspond-
ing to an asymmetric attractor (projection g in Fig. 9). The stream-
function for the full domain is color coded so that blue-black cor-
responds to the lower values (and hence cold temperatures) and yel-
low to the higher values (warm temperatures). The flow is seen to
be asymmetric as well—in particular, only cold-core rings are seen
to be shed.

Notice that these curves appear to diverge in period
as they approach an inertial scale value just slightly less
than di 5 1.395 (the vertical locus corresponding to this
value is optimistically labeled as the ‘‘homoclinic
point’’ in the figure). We conjecture that this divergence
is associated with the formation of a pair of homoclinic
orbits slightly prior to di 5 1.395. Assuming that this
is the case, we will denote the exact (but unknown)
value of di as . Notice also that a similar set of curveshomdi

exists in di . , which are visibly more diffuse inhomdi

appearance and harder to discern (the uppermost of
these is labeled ‘‘fundamental (symmetric branch).’’
These curves appear to diverge in period as di → homdi

from above.
We now conjecture that the uppermost curves cor-

respond to the fundamental period of families of exact
periodic orbits of the double-gyre circulation. (The
curves below the fundamental, for example, those la-
beled ‘‘harmonics’’ in Rh , are the super-harmon-homdi

ics of the fundamental, and they lie below the funda-
mental because we have plotted period instead of fre-
quency on the vertical axis.) This will be directly con-
firmed for di , 1.374 (and also at di 5 1.405), where
the flow is not chaotic, by examining phase projections.
We will also show that all the attractors in the region

(di , ) are asymmetric (implying that there are reallyhomdi

pairs of asymmetric attractors), whereas in the region
Rh . the attractors are symmetric or very nearlyhomdi

so.
All of the phase projections discussed in this paper,
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FIG. 12. Snapshots of the streamfunction at di 5 1.380 correspond-
ing to an asymmetric attractor (projection h in Fig. 9). Here, only
warm-core rings are seen to be shed.

and generated in the way discussed in the foregoing
section, are collected together in Fig. 9. All of these
projections were generated from the same time series
used to generate Fig. 8 so that we may establish direct
correlations between the figures: note that the letters
along the bottom of Fig. 8 and the letters indexing each
projection in Fig. 9 correspond. The delay-time t used
to generate these projections was equal to 1/128 in Sver-
drup gyre-turnaround time units and was chosen on the
basis of mutual-information analysis (e.g., see Fraser
and Swinney 1986)—it was also found simply to give
the best visual images of the dynamics.

Projections a–f in Fig. 9 clearly display closed tra-
jectories and therefore directly confirm the conjecture
that the uppermost curve in Fig. 8 corresponds to the
fundamental period of families of periodic orbits for di

, 1.374. Next, projections a–h display asymmetric at-
tractors, with both left-hand and right-hand versions vis-
ible. For example, projections c and d are almost mirror
images—not exact mirror images since they occur at
slightly different values of di. On the other hand, pro-
jections i–l appear to be symmetric in structure.

That all the attractors we have sampled in di , 1.395
(including those not included in Fig. 9), chaotic or oth-
erwise, are asymmetric can be verified by examining
the zero-frequency component of the power spectra. Re-
call that this component is included along the top edge
of Fig. 8a. If this component is nonzero, then the orbit
must be asymmetric; that is, the time series that gen-
erated it is not symmetric about the time axis. It can be
seen in Fig. 8a that there appears to be significant and
nearly constant zero-frequency energy everywhere in di

, . At di 5 (around 1.395), the zero-frequencyhom homd di i

component becomes suddenly darker. Figure 10 plots
this component by itself, showing that it drops suddenly
more than three orders of magnitude near di 5 ,homdi

indicating a sudden dramatic change in orbital sym-
metry. Beyond this point, the component begins to in-
crease slowly and irregularly as the inertial scale is in-
creased.

To make the physical interpretations of these dynam-
ical structures clear, Figs. 11, 12, and 13 demonstrate
the connection between orbital symmetry, as seen in the
phase-space embeddings, and the double-gyre circula-
tion. In these figures, the streamfunction for the full
domain is color coded so that blue–black corresponds
to the minimum and yellow to the maximum values. In
the approximation of the reduced-gravity QG model,
the difference between this upper-layer streamfunction
and the streamfunction of the bottom layer (which pres-
ently is identically zero) is proportional to temperature
at the base of the upper layer and therefore blue–black
in these figures corresponds to lower temperatures (cold)
and red–yellow corresponds to higher temperatures
(warm).

When the phase-space attractors are asymmetric, the
circulation patterns in physical space are such that the
separated and eastward flowing midlatitude jet oscillates

asymmetrically about the zero wind stress curl line (y
5 0). Figures 11 and 12, which correspond to the asym-
metric projections g and h in Fig. 9, respectively, dem-
onstrate this. In Fig. 11, cold-core rings are seen to
dominate, while in Fig. 12 warm-core rings dominate.
Further visual inspection of the flow patterns seems to
suggest that the shedding of eddies only occurs on the
dominant side. On the other hand, when the attractors
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FIG. 13. Snapshots of the streamfunction at di 5 1.410 correspond-
ing to a symmetric or very nearly symmetric attractor (projection 1
in Fig. 9). Here, the system sheds both cold-core and warm-core rings
symmetrically (or very nearly symmetrically).

FIG. 14. Power spectra of the time-asymptotic behavior of time
series from system (21) of Luce (1995), with n 5 5.5, m 5 24, and
k 5 4p2. This system possesses a homoclinic at R 5 Rh 5 43.9778.
Note the overall similarity of this plot to Fig. 8, particularly the
divergence at (R–Rh) 5 0 (where the homoclinic explosion occurs).
Unlike Fig. 8, saddle-node, period-doubling, and symmetry-breaking
bifurcations are absent.

are symmetric (or nearly so), the oscillation of the mid-
latitude jet is symmetric about y 5 0 (or nearly so) so
that, when eddy shedding occurs, cold-core and warm-
core rings are equally preferred (or nearly so). This is
demonstrated by Fig. 13, which corresponds to the sym-
metric projection l of Fig. 9.

Finally, we note that the fast oscillations, for example,

seen very clearly in projections e–h of Fig. 9, correspond
to mesoscale variability. For the representative set of
physical parameters mentioned in section 2, this me-
soscale variability has a timescale of about 110 days
whereas the overall oscillation occurs on a timescale
that varies between roughly 1 and 8 years. Furthermore,
it is clear from Fig. 9 (and Fig. 8) that the amplitude
of this mesoscale variability is quite small compared to
the amplitude of the overall (interannual) oscillation.
Now, we get back to presenting the evidence for SP.

The Hopf bifurcation that created the asymmetric
branch in di , is indicated in Fig. 8 (see the keyhomdi

included in the figure). This is the point at which an
asymmetric steady state became unstable, leading to the
onset of periodic oscillations in the gyres. We confirmed
that a Hopf bifurcation, and not a bifurcation such as a
saddle node, was responsible for the birth of the asym-
metric periodic oscillation by examining many phase
projections near the bifurcation, and this is also evi-
denced in part by Fig. 8. In this figure, note that the
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super-harmonics of the newly created orbit become vis-
ible only somewhat beyond the initial appearance of the
fundamental period indicating that the orbit was initially
almost purely fundamental (sinusoidal). This is what
one expects for a Hopf bifurcation, and not, for example,
in a saddle-node bifurcation. In Fig. 9 it can also be
seen that the orbits with the lowest inertial scale are the
simplest in structure, reflecting their initial elliptical
structure.

Having conjectured, and in some cases demonstrated,
that the yellow curves of Fig. 8 correspond to families
of periodic orbits, we now point out that the overall
features of Fig. 8, in fact, conform very closely to the
features of case II SP. First of all, the observed trend
that both sets of curves corresponding to periodic orbits
appear to diverge as they approach di 5 ; that thishomdi

event accompanies a dramatic change in attractor sym-
metry strongly hints at the presence of a pair of hom-
oclinic orbits near di 5 1.395. The existence of these
is of course a crucial prerequisite for SP. The existence
of the homoclinic is also suggested by the sequence of
projections in Fig. 9: Projections a–h show that as di

increases these trajectories pass nearer to and spend in-
creasingly longer periods of time in the vicinity of the
origin in these plots [the homoclinic fixed point in this
problem must be located at the origin because this point
is associated with a symmetric steady state on which
the measure a(t) is identically zero.] At projection i, in
particular, note that the (now symmetrical) chaotic at-
tractor is very tightly compressed in phase space, and
actually resembles a projection of a pair of homoclinic
orbits.

These projections also exhibit dynamical behavior
very consistent with the existence of a saddle-focus type
fixed point at the steady state—another crucial feature
of SP. To see this, first note that as di is increased to
1.395 the trajectories show an increasing tendency to
exit the vicinity of the origin along a specific axis in-
clined at about 70 degrees to the horizontal in the plots
(this is particularly evident in projections g–l). This be-
havior suggests that the fixed point at the origin pos-
sesses a real, positive eigenvalue (the ‘‘saddle’’ part).
Second, while exiting the origin, the trajectories also
show a tendency, which increases with di, to oscillate
around this inclined axis. When di ø 1.395, these os-
cillations are found to decay while the trajectory is ex-
iting. This is clearly exhibited in the time series at di

5 1.395, plotted in Fig. 17, corresponding to projection
i. This behavior suggests that the steady state also pos-
sesses a complex pair of eigenvalues with negative real
part (the ‘‘focus’’ part).

A third cardinal characteristic of SP in the presence
of an inversion symmetry exhibited in Fig. 8 is that the
symmetric principal orbit branch on one side of the
homoclinic has twice the period of the (asymmetric)
principal orbit branch on the other side. This can be
seen to be the case in Fig. 8b if points on the uppermost

yellow curves on opposite sides of but near to and equi-
distant to the suspected homoclinic point are compared.

As noted previously, in projection i the chaotic at-
tractor appears to be very compressed such that it close-
ly resembles a pair of homoclinic orbits, and this is
apparently the reason why there exist clearly discernable
yellow curves in Fig. 8, even where the power spectrum
is broadband. We suspect that this compression occurs
because, as we conjecture later on other grounds, the
parameter d is quite close to one. To understand why
we might expect compression of the attractor in this
case, recall that, as discussed in section 3, as d ap-
proaches one the infinite alternating sequence of saddle-
node bifurcations approaching the homoclinic must dis-
appear. This implies that, when d is close to one, the
onset of chaos associated with these bifurcations must
be closely confined in parameter space to the vicinity
of the homoclinic.

We remark that although this compression phenom-
enon has not been definitively studied for SP to the best
of our knowledge, a similar phenomenon is known to
exist in the real eigenvalue analogue of SP, the ‘‘hom-
oclinic explosion’’ route to chaos. For example, simi-
larly highly compressed chaotic attractors associated
with homoclinic orbits were found by Luce (1995) (e.g.,
see Fig. 6 of that paper), and shown to be compressed
specifically because the analogue of d was close to one.
If the system of equations (21) from Luce (1995) are
integrated, with m 5 24, n 5 5.5, k 5 4p2, and with
R ranging from 43.96 to 44.02, and the power spectra
are plotted together, one obtains the plot shown in Fig.
14. This plot is quite similar in overall form to Fig. 8.

We now discuss some evidence for certain other local
bifurcations in Fig. 8. First, note once again the dis-
continuities that the yellow curves corresponding to the
periodic orbit families in di , exhibit—that is,homdi

points where there appear to be discontinuous jumps in
period (the discontinuities close to the suspected hom-
oclinic are actually most clearly seen in the harmonics
of the asymmetric families). These jumps, as we dem-
onstrate later with a known example, are exactly what
we can expect to see in the spectral plots if pairs of
saddle-node bifurcations (S-shaped bifurcations) are
present. We have thus labeled some of these disconti-
nuities as saddle-node bifurcation pairs in Fig. 8—six
are clearly visible in Fig. 8a by looking at the first
harmonic of the asymmetric branch, while four more
appear to be barely distinguishable in the second har-
monic (just into the chaotic regime). While there are
more of these bifurcation events as di approaches the
homoclinic point, they are not visible on the scale of
the plots in Fig. 8.

Next, as described in section 3, in case I and II SP
we generally expect period-doubling bifurcations to oc-
cur in between the pairs of saddle-node bifurcations and
symmetry-breaking bifurcations, especially when close
to the homoclinic point. We can verify that some period-
doubling bifurcations do, in fact, occur in the double-
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FIG. 15. Our method of analysis (right) of a simpler ode system in which the Shilnikov phenomenon is better understood further reinforces
the analysis of the double-gyre circulation. The figure on the left is an approximate reproduction of Fig. 4.7 (ii) of Glendinning and Sparrow
(1984).

gyre sequence. For example, in the power spectra of
Fig. 8, isolated ‘‘islands’’ of spectral power at higher
periods can be seen, visible as blotches of lighter color
at periods larger than the fundamental (these are labeled
as ‘‘fundamentals from period-doubling’’ in the figure).
Figure 8b has a linear period scale and can be used to
quickly verify that these islands occur at multiples of
two, four, and eight times the fundamental. Additional
islands can also be seen in the harmonics, as should be
the case. It is verified directly from the phase projections
that these are due to period doubling of the principal
orbit. Projection f in Fig. 9 is an example where the
period doubling can be seen explicitly, and corresponds
to the most visible period-doubling island in Fig. 8. As
another example, the trajectory in projection e is also
seen to be slightly period doubled (although this is hard
to detect visually) and is associated to a correspondingly
weaker looking island. More detailed considerations
suggest that the period doubling is the mechanism for
the onset of chaos around di 5 1.374.

To validate our interpretation of the spectral features
in terms of saddle-node bifurcations and period dou-
blings, we briefly consider an example system in which

the existence of SP has been established. To this end,
we consider system (18) of Glendinning and Sparrow
(1984):

2ẋ 5 y ẏ 5 z ż 5 2z 2 by 1 cx 2 x , (5.1)

with b 5 0.8. For the range of values of c in (5.1) that
we are interested in, the linearized flow at the origin
(the fixed point of interest to us), has a complex con-
jugate pair of eigenvalues whose real part is negative
and one real positive eigenvalue like explicitly indicated
in (3.1) [see Glendinning and Sparrow (1984) for further
details]. This system displays both case III SP and S-
shaped and period-doubling bifurcations. While the
reader is referred to Glendinning and Sparrow (1984)
for details of the dynamics, Fig. 15 compares one of
that paper’s figures to our method of spectral analysis
of this system for 1.69 # c # 1.71. Figure 15a is an
approximate reproduction of Fig. 4.7 (ii) of Glendinning
and Sparrow (1984), whereas Fig. 15b plots our type
of spectral graphic. The color-coded spectra are shown
with the bifurcation parameter c on the x axis and the
period (linear scale) on the y axis. In this comparison,
the correspondence between the jump in the dominant
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FIG. 16. Time series of the asymmetry measure at three values of forcing close to the forcing
at which the homoclinic is suspected. From top to bottom, the value of the inertial scale di is 1.393
(a), 1.394 (b), and 1.395 (c).

period at c between 1.694 and 1.695 in Fig. 15b and
the saddle node at about the same value of c in Fig. 15a
is clear. (On zooming in, a second jump is also clear in
our spectral analysis at a value of c close to 1.706.) The
island indicating a period-doubled orbit in Fig. 15b be-
ginning at a c value of about 1.699 is not seen in Fig.
15a because Glendinning and Sparrow (1984) obtained
their figure using continuation techniques that ignored
this orbital branch.

Finally, guided by our knowledge that a series of
saddle-node and symmetry-breaking bifurcations occur
on the symmetric branches for case I and II SP, we have
(very optimistically) labeled as symmetry-breaking bi-

furcation pairs what appears to be a systematic pattern
of irregularities in the fundamental of the symmetric
branch in Fig. 8. Specifically, we suspect that these ir-
regularities result from other bifurcations that directly
change the chaotic attractor structure, such as period-
doubling cascades, each of which follows a symmetry-
breaking bifurcation involving the principal periodic or-
bit. Our conjecture here is supported somewhat by the
irregular behavior of the zero-frequency component be-
yond the homoclinic point in Fig. 10 because such ir-
regular behavior would be consistent with the occurence
of a series of local symmetry-breaking events that con-
tiguously and only slightly break the symmetry of orbits
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FIG. 17. Nonlinear fit (continuous lines) of segments of time series a(t) (symbols) in Fig. 16 to
Eq. (5.2) to extract the parameter d [Eq. (3.3)]. The fits are performed at parameter values cor-
responding to near-homoclinic circulation, and consist of a duration during which the phase tra-
jectory is close to the saddle-focus fixed point where its evolution is dominated by the linear
structure in the vicinity of the saddle focus. To ensure robustness, two different segments are used.
The first segment is chosen from Fig. 16b (di 5 1.394) and the second segment is chosen from
Fig. 16c (di 5 1.395).

(unlike a global homoclinic event that produces a dis-
continuous change in symmetry). Moreover, the overall
increase in this irregularity as we leave the vicinity of
the homoclinic is also what we expect because in general
we expect bifurcations on the principal orbit to produce
large changes in period further from the homoclinic.

Summarizing the evidence presented so far for the
double-gyre circulation, we see 1) that there is evidence
suggestive of a homoclinic bifurcation involving a sad-
dle focus, 2) that a change from asymmetric to sym-
metric attractors with a corresponding doubling of pe-
riod occurs at the suspected homoclinic, and 3) that there
appears to exist saddle-node, period-doubling, and pos-
sibly symmetry-breaking bifurcations arranged in a way
consistent with SP. Based on this we propose that SP is
occurring in the double-gyre circulation.

We now take up the more specific question of what
kind of SP—case I, II, or III—is presently occuring in
the double-gyre circulation. We notice from Fig. 8 that
the two branches of periodic orbits do not noticeably
appear to cross back and forth across the suspected hom-
oclinic point at di 5 . This seems to rule out casehomdi

I SP (see Fig. 5). Likewise, the ubiquitous chaos for

inertial scales above di 5 1.374 appears to rule out case
III. We thus suspect case II SP.

To strengthen the evidence for case II SP, we at-
tempted to measure the value of parameter d for the
double-gyre circulation near the suspected homoclinic
point. Recall that equation (3.3) defined d to be the ratio
of the attracting rate to the repelling rate of the saddle
focus, and that for case II SP d lies in the range 1/2 K
d ,ø 1. We therefore attempted to compute d by mea-
suring the exponential rate of decay of oscillations and
the overall exponential growth during periods of time
that a (near-homoclinic) phase trajectory was in the vi-
cinity of the origin and where the evolution is dominated
by the linear eigenvalues of the fixed point.

To carry out this measurement, we examined the time
series, shown in Fig. 16, corresponding to projection i
in Fig. 9 (di 5 1.395) and two other time series very
close to the suspected homoclinic (di 5 1.393, and
1.394). We first note that each of these chaotic series is
seen to repeatedly exhibit episodes of decaying oscil-
lations accompanied by overall exponential growth
when the trajectory ‘‘dwells’’ close to the steady-state
solution. The ratio of the decay rate of these oscillations
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to the overall exponential growth rate is therefore the
quantity of interest to us for measuring d.

Figure 17 shows the result of fitting a nonlinear func-
tion containing exponentially decaying oscillations and
exponential growth to the longest of these dwelling ep-
isodes, where the trajectory is thought to be making its
closest approach to the fixed point. One segment is
drawn from the series in Fig. 16b and the other from
Fig. 16c. The function fit was

rt 2lta (t) 5 be 1 ge cos(vt 1 f)fit

1 e cos(vt 1 f9), (5.2)

which describes a linear combination of exponential
growth (the saddle part), decaying Rossby waves (the
focus) and also a nondecaying background Rossby wave
field. The last of these was found to be necessary for
obtaining a robust fit if the integral of the streamfunction
is conserved, an issue that is taken up in the next section.
The values for d obtained for the segments shown in
Fig. 17a and 17b were d 5 l/r ø 0.85, and 0.91 re-
spectively. These values clearly favor case II SP. If the
integral of the streamfunction is not conserved (see the
next section for further discussion of issues related to
conserving or not conserving this integral), the value
of d obtained close to the homoclinic was also approx-
imately 0.9.

Finally, for the set of values chosen for the physical
parameters in section 2, the timescale corresponding to
v obtained in the above nonlinear fit is about 112 days.
In this context we note the following: 1) Using the Ross-
by wave dispersion relation, the above frequency, v,
corresponds to a wavelength of about 250 km, and the
existence of oscillations on this scale was independently
confirmed by examining movies of the flow. This aspect
of the nonlinear fit, therefore, validates the assertion that
the oscillatory behavior in the vicinity of the saddle
focus is associated with Rossby waves. 2) That the os-
cillatory timescale obtained in the above nonlinear fit
also corresponds to the characteristic timescale of me-
soscale variability (e.g., seen very clearly in projections
f, g, and h of Fig. 9) points to the fact that the origin
of this Rossby wave field is directly related to mesoscale
variability. 3) While the amplitude of the mesoscale
variability is always small compared to the lower-fre-
quency (interannual) oscillation, the former is further
suppressed close to , at values of forcing close tohomdi

the suspected homoclinic. Refering to Fig. 2 this seems
consistent with the manner in which the homoclinic or-
bit(s) exit the vicinity of the fixed point.

6. Dimensionality of the dynamics and
conservation of c

When mass is exactly conserved in the reduced-grav-
ity QG model, the effects of Kelvin waves are param-
eterized in a system that does not explicitly allow for

such waves (e.g., see Milliff and McWilliams 1994). If
for convenience, we rewrite (2.4) as

2L ]c
2¹ 2 5 A,

21 2L ]tR

then the streamfunction c(t) can be decomposed as

c(x, y, t) 5 c (x, y, t) 1 c(t)c (t),I B

with

2L ]cI2¹ 2 5 A, c 5 0,IB21 2L ]tR

2L ]cB2¹ 2 5 0, c 5 1, andBB21 2L ]tR

c dx dyE I

c(t) 5 .

c dx dyE B

Such an implementation results in a propagation of the
effects of Kelvin waves around the basin with infinite
speed.

In a separate control experiment, wherein the Kelvin
wave parameterization (KWP) is neglected, we find that
the signature of the westward propagating Rossby wave
field is related almost entirely to the relaxation phase
of the oscillation of the midlatitude jet after it has me-
andered away farthest from its antisymmetric state. On
the other hand, in the simulations that we have presented
in this article, a KWP was used, and in these simulations,
we find that in addition to the Rossby wave field as-
sociated with the relaxation phase of the midlatitude jet,
the parameterized Kelvin wave gives rise to an addi-
tional background field of Rossby waves. These Rossby
waves originate at the eastern boundary of the domain
and propagate westward in a north–south symmetric
fashion as, for example, in the study of Milliff and
McWilliams (1994).

Thus, we suspect that while in the case without KWP,
energy wholly remains in the gyre modes, whereas with
KWP, a part of this energy is diverted into the Kelvin–
Rossby wave production mechanism. Indeed, we find
that, when KWP is neglected, it is not necessary to
include the term e cos(vt 1 f), which accounts for the
background Rossby wave field, in the nonlinear fit (5.2)
to obtain a robust fit and that the values obtained for d
are found to be considerably less dependent on the way
a(t) is obtained; that is, the areas over which a(t) is
obtained can be varied greatly with little effect on the
values of d. With KWP, consistent measurements for d
necessitate that the patches be significantly localized
over the aforementioned region. In contrast to this, the
global bifurcation picture obtained via power spectra,
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that is, Fig. 8, is found to change little in form with or
without KWP and regardless of patch size.

These facts lead us to suspect that 1) with KWP the
dynamical dimension of the entire system is increased
relative to the non-KWP case due to the Kelvin–Rossby
wave mechanism and 2) the dynamics of the gyres them-
selves are still well characterized as exhibiting the SP
bifurcation both with and without KWP. The latter fact
accounts for the invariance of the global bifurcation
picture, while the former explains the need to localize
the measurement for a(t) with KWP. We are presently
examining this issue in greater depth.

7. Conclusions

It is now well recognized that simple models of wind-
driven circulation in midlatitude oceans can exhibit a
rich variety of variability including those on the me-
soscale and interannual timescales. Most previous stud-
ies, with the exception of Meacham (2000), have con-
sidered steady states and periodic solutions and their
local bifurcations and have suggested the existence of
a multiplicity of such simple solutions or a sequence of
Hopf bifurcations (leading to a strange attractor) as the
primary cause of such variability. Complementary to
these studies, we show that other solution types like,
for example, homoclinic orbits (formed by a collision
of periodic solutions and steady states in phase space),
and their associated global bifurcations, can play a cen-
tral role in organizing the variability of the wind-driven
circulation.

In particular, by considering the double-gyre circu-
lation as represented by a reduced-gravity QG approx-
imation, we have shown that its dynamics exhibits a
structure resembling a bifurcation scenario called Shil-
nikov phenomenon. This interpretation of the dynamics
provides an underlying coherence to the double-gyre
circulation despite the fact that its dynamics are seen to
change drastically at some parameters with a small
change in the forcing. Thus, while one may have con-
cluded that the model is structurally unstable in the sense
of variability as a function of parameters, it can be better
understood from a global perspective. We remark that
it would be very difficult to extract these details of the
dynamical structure by direct observation of the flow
patterns. This also demonstrates the utility of the dy-
namical systems tools and concepts used here for the
analysis of ocean dynamics.

The primary implication of this study to the double-
gyre circulation is that, if global bifurcations and dy-
namical chaos occur in an approximation like the re-
duced-gravity QG model, they are likely to be of im-
portance in more realistic models and that, therefore,
homoclinic bifurcation mechanisms like SP may explain
in part the variability of wind-driven circulation. In the
future we hope to give a more comprehensive overview
of global bifurcations of the double-gyre circulation and

resolve some of the questions raised in this paper about
dynamical dimension.
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