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1. Introduction
The two-dimensional Euler equations for a perfect incompressible uid are given by

@t!(t; x) + div[!(t; x) � u(t; x)] = 0;
div u = 0; ! = curl u;

!(0; x) = !0(x);
(1.1)

where !(t; x) is the vorticity function, u(t; x) is the spatial velocity vector �eld, t denotes
time, and x = (x1; x2) denotes the Cartesian coordinates in the plane. Inverting the

vorticity-velocity relation, we have that

u(t; x) =

Z Z
K(x; y)!(t; y)dy; (1.2)

where K = r?G and G is the solution of �4G = Æ and r? = (�@x1 ; @x2). For uid
motion over the entire plane, K(x; y) = (2�)�1r? log jx� yj. Let �t(x) = �(t; x) denote
the ow of u so that

@t�(t; x) = u(t; �(t; x)): (1.3)

Because u is divergence-free, the ow map �t is an area-preserving transformation. It

follows that

@t�(t; x) =

Z Z
K(�t(x); �t(y))!(t; �t(y))dy

=

Z Z
K(�t(x); �t(y))!0(y)dy (1.4)

(1.5)

where the last equality follows from the pointwise conservation of vorticity along La-

grangian trajectories, !(t; �t(x)) = !0(x). Hence, it is clear that the initial vorticity �eld
completely determines the uid motion. When the initial vorticity is a sum ofN point vor-

tices Æi positioned at the points xi in the plane with circulations �i, i.e., !0 =
PN

i=1
�iÆi,

then (1.4) gives the classical point-vortex approximation to (1.1), but as a numerical
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method for approximating the Euler ow with arbitrary initial vorticity functions, the

method is known to be unstable.

Chorin's vortex blob method ? alleviates the instability of the point-vortex scheme by

smoothing each delta function Æi with a vortex blob �
�, a function that decays at in�nity,

and whose mass is mostly supported in a disc of diameter �. Thus, instead of using the

integral kernel K(x; y), one instead uses the smoother kernel K� = r?G� where G� is

the solution of

�4G� = ��:

The vortex-blob method then evolves the point-vortex initial data, which we shall now

call q0, by the ordinary di�erential equation

@t�(t; x) =

Z Z
K�(��t (x); �

�
t (y))q0(y)dy: (1.6)

Hald ? has shown that whenK� is a Bessel function or a polynomial of Bessel functions,

the vortex method has ini�nite-order accuracy. When the vortex-blob K� is a modi�ed

Bessel function of the second kind, it is the fundamental solution of the operator (1��24)

in the plane, so that if u�(t; x) =
R R

K�(x; y)q(y)dy, then the vorticity q is related to

the smoothed velocity vector �eld u� by q = (1 � �24)curl u�. Thus, Chorin's vortex
method is actually given by the PDE

@tq(t; x) + div[q(t; x) � u�(t; x)] = 0;
div u = 0; q = (1� �24)curl u�;

q(0; x) = q0(x):
(1.7)

Remarkably, this PDE is exactly the equation for a second-grade non-Newtonian inviscid

uid, when the constant � > 0 is interpreted as a material parameter which measures the

elastic response of the uid due to polymerization. To see this, we may reexpress (1.1)

as an evolution equation for the velocity u�(t; x). Temporarily dropping the superscript

�, (1.7) is equivalent to

@t(1� �24)u(t; x) + curl(1� �24)u(t; x)� u(t; x) = �grad p(t; x); (1.8)

which is the traditional form of the second-grade uid equations Dunn & Fosdick (1974)

(of course, one can add viscosity ��4u to the left-hand-side). According to Noll's the-

ory of simple materials, (1.8) is goverened by the unique constitutive law that satis�es

material frame-indi�erence and observed objectivity. Consequently, the vortex method

with the Bessel function smoothing naturally inherits these important characteristics.

In light of the fact that some authors have stated that turbulence is like polymer ow,

we �nd this connection between a classical numerical algorithm and a well established

constitutive theory for polymetric ow to be quite intrigueing.

In addition to this surprising connection, there is also a beautiful geometric structure

to the vortex method which follows the framework developed by Arnold (1966) and Ebin

& Marsden (1970). While the details of this particular issue are far outside the scope

of this article, it is, nevertheless, worthwhile to state the result. Arnold showed that

the appropriate con�guration space for a perfect incompressible uid is the group of all

area preserving di�eomorphisms of the uid container, and that solutions of the Euler

equations are geodesics on this group with respect to a certain kinetic energy metric,

characterized by the inner-product
R R

u(x) � v(x)dx for two vector �elds u and v. The
vortex blob method also has this geometric property, but now the metric is instead
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characterized by Z Z �
u(x) � v(x) + 2�2Def u(x) � Def v(x)

�
dx;

where Def u is the rate of deformation tensor (see Shkoller (1999) for the geometry and

analysis of the vortex dynamics).

The vortex method numerical scheme thus preserves the Hamiltonian structure of

the Euler equations. In particular, vorticity remains pointwise conserved by the smooth

Lagranian ow ��t so that

q(t; ��t (x)) = q0(x);

the vorticity momenta

Ip =

Z Z
qpdx

are conserved, and so the Kelvin circulation theorem remains intact as well.

Because we have the PDE (1.7) that governs the vortex method, we can now consider

the spectral truncation of (1.7) for an arbitrary initial vorticity function q0, and study

the vortex dynamics of such a numerical approximation, and in particular, compare the

vortex-blob dynamics to the spectrally-truncated Euler dynamics. In order to obtain nu-

merically resolved simulations, we use biharmonic dissipation with the minimal viscosity

� for which resolution is attained. Based on our numerical experiments, we �nd that for

the above �xed value of �, the vortex method (� > 0)

1. cutts-o� the energy spectrum at small scales faster than for the dissipative Euler

equations, while leaving the large scale spectrum essentially unchanged;

2. produces signi�cantly smaller decay of the kinetic energy than the Euler equations

(using the same dissipation and numerical resolution);

3. leaves the entire enstrophy spectrum essentially unchanged, preserving the funda-

mental sharp decay of enstrophy during the vortex merger process.

Although the addition of viscosity is essential for obtaining numerical resolution (and

hence meaningful results), it is interesting to compare the inviscid dynamics of the spec-

tral truncations of the vortex method and the Euler equations when � = 0. We �nd

that the vortex method for � > 0 provides a dispersive regularization of the conservative

Euler dynamics, and while preserving the correct large scale dynamics, the scheme is able

to �lter the small scale noise in Euler which is traditionally removed by the addition of

viscous dissipation.

While our focus has thus far been relegated to the e�ect of vortex-blob smoothing

of traditional Euler dynamics, our computational studies also reect the dynamical at-

tributes of polymerization of a Newtonian uid, and in particular, the role of slight

(for small �) elasticity of the uid. Restating our observations in this non-Newtonian

framework, we �nd that a small amount of polymerization has the e�ect of smoothing

small scale motion, cutting-o� the slope of the energy spectrum, and maintaining (even

quantitatively) the large scale features of the ow.

2. Numerical Simulations

In this section, we will consider both forced-dissipative and unforced-inviscid simula-

tions of the Euler and Euler-� equations to demonstrate the the e�ect of the inviscid

modi�cation to the advective nonlinearity of the Euler equations.
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2.1. Formulation

The evolution of both the Euler and Euler-� sytems we consider in this article is governed

by

@!

@t
+ (1� �2r2)�1J [ ; (1� �2r2)!] = F +D; r2 = !; (2.1)

where a vorticity-stream function formulation is used and all notation is as previously

de�ned. In the above equations, the Euler system corresponds to � = 0.

For simplicity we work on a doubly periodic domain of length 2� on a side and work

with Fourier modes. Considering Fourier modes with wavenumbers in the set k given by

k � fk = (kx; ky); 0 � kx; ky � kmax; kx; ky integersg ; (2.2)

the Galerkin projection of (2.1) on to these modes results in

d

dt
b!k + 1

1 + (jkj=k�)2
X

m+n=k
k;m;n2k

�
1 + (jnj=k�)2

� m� n

jmj2
b!mb!n = bF + bD; (2.3)

where b! is the Fourier transform of ! and k� is the wavenumber corresponding to �.
Under such a truncation, among the in�nity of inviscid (F = D = 0) conserved quantities

for (2.1), the only two conservation properties that survive are those for the kinetic energy

EH1 , given by

EH1 =
1

2

Z
M

�
juj2 + �2jruj2

�
dx

�
= kuk2H1

�
: (2.4)

and enstrophy ZH2 given by

ZH2 =
1

2

Z
M

��
1� �2r2

�
!
�2
dx

�
= k!k2H2

�
: (2.5)

Although the inviscid conserved energy is EH1 and the inviscid conserved enstrophy is

ZH2 , we will concern ourselves with the dynamics of the usual kinetic energy and usual

enstrophy as given by

E =
1

2

Z
M

juj2dx; (2.6)

Z =
1

2

Z
M

!2dx: (2.7)

This is because, our intent in this article is to use the Euler system as the reference and

then to consider the modi�cations due to nonzero � in (2.1). Only the usual energy and

enstrophy as de�ned in (2.6) and (2.7) are relevant in the reference Euler system.

Equation (2.3) is implemented numerically using a fully dealiased pseudospectra methodl

(see Canuto (1988)), in which the dealiasing is achieved using the two-thirds rule (also

called the three-halves rule) wherein only two-thirds of the Fourier modes are used and

the highest wavenumber-third of the Fourier modes are zero-padded. (This is equivalent

to computing the nonlinear terms in physical space at three-halves the number of points

as the number of Fourier modes used.) Conservations (2.4) and (2.5) are thus respected

exactly by the spatial discretization.

We remark that we repeated some of the computations using the Arakawa second-order

�nite di�erence spatial discretization. This scheme also respects the conservations (2.4)

and (2.5) and uses the Arakawa Jacobian, JA[ ; !], for J [ ; !], and where JA[ ; !] is
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given by

JA[ ; !] =
1

3

�
 y!x �  x!y + ( y!)x � ( x!)y + ( !x)y � ( !y)x

�
; (2.8)

(see Arakawa (1966)). In the above equation, each of the partial derivative is replaced by

its central di�erence quotient. The numerical results this scheme produced were qualita-

tively identical to those produced by the spectral method.

As for the temporal discretization, we use a (nominally) �fth-order, adaptive timestep,

embedded Runge-Kutta Cash-Karp algorithm (see Press et al. (1992)). This scheme

is advantageous over the more traditional leapfrog timestepping as it does not have a

spurious computational mode and it allows for variable timestepping to be implemented

in a straightforward manner. One step of this method uses six functional evaluations

at appropriate points which are combined in two di�erent ways to produce a fourth-

order and a �fth-order increment, thereby allowing an estimate of the �fth-order error.

This method of adaptive timestepping is approximately twice as eÆcient as Runge-Kutta

methods based on timestep doubling. By requiring

max jE5(!k; !k+1)j
max j!kj

< 10�7;

energy error was (on average) less than one hundredth of a percent (0.01%) and enstrophy

error was less than one tenth of one percent (0.10%) during the course of the inviscid

simulations that we performed.

We choose initial conditions so that the initial energy spectrum scales as

E(k) � k exp

�
�
k

k0

�
; (2.9)

where k0 is chosen to be 2. Further, the amplitude for each mode is drawn from a zero-

mean normal distribution of random numbers. For convenience, we measure time in terms

of the initial large eddy turnover time, � , which is de�ned as

� =
2�k�1i
u0

:

Here, ki represents the integral scale of the initial condition, found as a ratio of its

enstrophy to energy:

ki =

r
Z

E
(2.10)

and the mean uctuation velocity u0 is calculated as

u0 =
p
2E

Henceforth, if the unit of time is not mentioned, it should be assumed to be in terms of

the initial large eddy turnover time.

2.2. Forced-Dissipative Cases

In the forced-dissipative runs to be considered in this seciton, the forcing F is achieved

by keeping the amplitudes of modes with wavenumbers in the small wavenumber band

10 � k < 10:001 constant in time. The dissipation, D, is a combination of a fourth order

hyperviscous operator and a large-scale friction term:

D = Æ �
�
��r2

�4
!:
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As has been used in numerous previous studies of two-dimensional turbulence (e.g., see ?),

we use this form of the dissipation operator in order to satisfy the diÆcult requirements

of having to resolve the ow and at the same time reach a statistically steady state

in a fairly inviscid regime and with reasonably small computational resources in this

preliminary study. The form and value of the forcing and dissipation are held exactly the

same for all the runs to be presented, irrespective of the resolution and the value of �.
For reference,, we show in Fig. 2.1, the vorticity �eld for the case � = 0 at time 20, when

the system has reached statistically stationarity.

-500 -250 0 250 500
Figure 2.1. Vorticity �eld when the system has reached statistically stationarity.

Fig. 2.2 shows the evolution of the kinetic energy E with time for four di�erent values of

k�. For these computations, 256 physical grid points were used in each direction, resulting
in, after accounting for dealiasing, a maximum, circularly-symmetric wavenumber, kmax
(see 2.2) of 85. The four runs correspond to k� of 1 (dissipative Euler) and 42, 21, and

7. We remind the reader, that but for the di�erence in the values of k�, the four runs are
identical. This �gure shows that for identical forcing and dissipation, the tendency with

increasing � (equivalently decreasing k�) is to achieve an overall balance which makes
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the ow less viscous. To further examine the nature of this reduced-viscous behavior,

we examine the energy-wavenumber spectra for these four cases in Fig. 2.2. Here, the

average of the one dimensional energy spectrum E(k) between times 5 and 20 is plotted

against the scalar wavenumber k. Figure 2.2 shows that the reduced-viscous behavior for
increasing � is achieved by systematically increasing the energy in modes larger in scale

than the forcing scale and decreasing the energy in modes smaller in scale compared to

the forcing scale. The larger energy content in the larger scales (smaller wavenumbers) is

a reection of the enhancement of the inverse cascade of energy of two-dimensional turbu-

lence by the nonlinear-dispersive modi�cation of the advective nonlinearity when � > 0

in (2.1). So also, the decreased energy content in the smaller scales (larger wavenumbers)

is attributable to the same nonlinear-dispersive modi�cation and is a reection of the

fact that at these scales, the enstrophy that is cascading is not the usual enstrophy as

de�ned in (2.7), but actually the enstrophy as de�ned in (2.5) (and which would be con-

served in an inviscid and unforced case). The overall e�ect of increased inverse energy

cascade and depressed energy levels in the high modes are shown in Fig. 2.4, where the

time-evolution of the integral wavenumber scale ki, as de�ned in (2.10), is shown for the

same four cases: with decreasing k�, ki is also decreasing.

0 5 10 15 20
Time

0

100

200

300

E
ne

rg
y

Figure 2.2. Kinetic energy vs. time

We can carry out a Kolmogorov-like dimensional argument to estimate the scaling

of the energy spectrum in the enstrophy cascade inertial regime, if we assume that the

wavenumber k� only appears in the Helmholtz operator. Thus, in this regime,

E(k) � �aH2kb; (2.11)

where �H2 is the rate of dissipation of ZH2 enstrophy, and a and b are exponents to be
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1 10 100
k

10-8

10-6

10-4

10-2

100

102

E
(k

)

Figure 2.3. k� = 1, 42, 21, and 7.
stationarity.

determined by dimensional analysis. A dimensional analysis of (2.11), leads to

L3T�2 = T�3aL�b
�
1 + �2L�2

�2a
;

from which a = 2=3. However, even in the enstrophy cascade regime, the value of b
depends on the the ratio �=L. For � � L, of course, b = �3, or the classical E(k)�3 is

recovered. So, also when � � L, E(k) � k�
17

3 . Finally, when � is comparable to L, it
is easy to see that E(k) falls o� faster than the corresponding fall-o� for Euler (veri�ed

in Fig. 2.2, but slower than k�
17

3 . We defer the veri�cation of the exact values of the

exponent b to later studies when we can a�ord much larger simulations with a good

dynamic range in the inertial regime.

The steeper fall-o� the energy spectrum with k in the enstrophy cascade range of

wavenumbers when � > 0, compared to Euler may, at �rst, suggest that a coarser res-

olution may be suÆcient to resolve the ow when � > 0 (for the same forcing and

dissipation). However, this is not the case, as should be clear from Fig. 2.2. In this �gure,

the spectra of the four cases previously discussed is replotted using solid lines, and the

spectra drawn using dashed lines are from four new runs where everything is held exactly

the same, but the resolution is reduced in half (kmax = 42). The degree of non-resolution

of the ow with this reduced resolution is indicated by the degree of deviation of the

dashed-line spectrum from the solid-line spectrum, and this seems to be independent of

� to the leading order.

2.3. Unforced-Inviscid Cases

The �niteness of resolution is not a problem when the ow is fully resolved by the apriori

�xed resolution as in the �rst four computations of the previous section. On the other
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Figure 2.4. Integral wavenumber vs. time

hand an inviscid system, either Euler or Euler-� will outrun any given resolution, however

high; when this will happen is a question of the initial conditions, the value of � and the

chosen resolution. But we think there is use to considering the �nite truncation (2.3) even

when �4 is identically zero, and the ow is, by de�nition, poorly resolved. This is not to

suggest that such computations are directly physically relevant, but only that one may

learn aspects of the system which are chosen to model the original physical situation.

Sometimes, this may in turn be useful in checking the consistency or a lack of it with

respect to certain hypothesized processes in the original system. It is in this spirit that

we now go on to consider the long time states of the inviscid Euler and Euler-� systems

truncated to be closed under our apriori �xed resolution.

The setup for the new simulations we present now are identical to those for the previous

simulations, but with F and D identically zero in each of the cases. In the initial few

characteristic times, there is a downscale cascade of enstrophy and an upscale cascade of

energy from the given initial conditions resulting in the system encountering the �nite

bounds imposed by the truncation. Thereafter, the solutions of the truncated system are

not representative of the solutions of the untruncated system and the nonlinearity acts

to thermalize the system while respecting the dual conservation of kinetic energy and

enstrophy ((2.4 and (2.5)). This results in statistical equilibria of the kind considered in

Kraichnan & Montgomery (1967) (and references therein) for � = 0 and Nadiga (1999)

for � 6= 0. We also note that conservation requirements impose rather strict numerical

time step requirements in the inviscid cases.

The initial conditions previous described are so as to correspond to negative tempera-

ture states from the statistical mechanical point of view (see Kraichnan & Montgomery

(1967) and references therein and Nadiga (1999)), simply meaning that the lowest modes
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Figure 2.5. Halved resolution
stationarity.

of the system are excited to high enough amplitudes to give rise to coherent looking phys-

ical structures, but with a nontrivial distribution of energy in the higher modes. In fact,

the spectra in Fig. 2.6 compare the excitation of the various modes at di�erent values

of �. These spectra are averaged in time between 45 and 60 to average over statisti-

cal uctuations after the systems have settled in their respective statistical equilibria.

Clearly, the most signi�cant di�erences occur at large wavenumbers with the energy at

high wavenumbers getting smaller with increasing �. Actually, for � 6= 0, a two-constraint

statistical theory anticipates a more rapid decay of the one-dimensional energy spectrum:

E(k) � k�5;

as compared to

E(k) � k�1;

for � = 0 (see Nadiga (1999) for details), and this is clearly veri�ed in Fig. 2.6.

3. Concluding Remarks
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