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Abstract: Detonation Shock Dynamics (DSD) can be used to model the e�ects

that shock curvature � has on detonation speed Dn(�). At the edges of the

explosive, Dn(�) is supplemented with boundary conditons. By direct numerical

simulation (DNS), we study how the reaction zone interacts with the edge. DSD

theory has been integrated with the level-set method of Osher & Sethian and

the Los Alamos DNS code Mesa to create a powerful tool for simulating complex

explosive-containing systems.
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1. Introduction

To accurately predict the propagation of detonation through an explosive, one

needs to model the physics that occurs on the chemical reaction-zone scale �r.

In sharp contrast to the structured shocks observed for gaseous detonation,

those for heterogeneous solid explosives are broadly curved on the �r scale. The

speed of the detonation is strongly inuenced by the curvature of the shock �;

with reductions of speed of 40% in strongly divergent ows.

Safety concerns have led to the use of explosives that satisfy L=�r = O(103),

where L is a representative dimension of the explosive. Curvature e�ects have

a strong inuence on detonation in these systems, and highly resolved multidi-

mensional simulations are \expensive." A body of theory and supporting ex-

periments, called Detonation Shock Dynamics (DSD) (Bdzil & Stewart 1989),

has been developed that treats these curvature e�ects (Aslam et al. 1995). The

DSD front theory derives a speed function Dn(�) based on a weakly divergent,

quasi-one-dimensional (1D) model of the detonation reaction zone. This func-

tion can also be determined directly from experiments. The regions of strongest

ow divergence are found near the explosives' boundaries. Boundary conditions

(BC) must be supplied in addition to Dn(�) to treat these interactions. The

dynamics of broadly curved fronts, described by DSD, interacts with the edge
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through a narrow boundary layer a few �r thick, where the ow is both reactive

and fully two dimensional (2D).

In Section 2 we give a brief review of DSD. Front theories require a front

propagation algorithm. In Section 3 we describe an engineering implementation

of DSD that uses a level-set (LS) algorithm (Osher & Sethian 1988) to propa-

gate the DSD front (Aslam et al. 1995). To integrate DSD front theory with

hydrodynamic simulations, an accurate method is needed to quickly burn the

explosive and capture the detonation state consistent with Dn(�). In Section

4 we describe our new burn model and show a full DSD-based simulation. In

Section 5 we discuss results obtained from high-resolution simulations of two

edge problems: (1) the sudden loss of con�nement, and (2) oblique interaction

of detonation with a rigid wall. Owing to reaction-zone e�ects, we �nd that

detonations exhibit von Neumann reection (Colella & Henderson 1990).

2. DSD Theory

DSD is the name given to the body of multidimensional detonation theory and

experiments that is used to describe the dynamics of detonation with broadly

curved shocks on the reaction-zone scale �r. The model equations used to

describe this limit derive from the 2D, reactive Euler equations transformed to

shock-attached, intrinsic coordinates. Shown in Fig. 1 is our coordinate net of

straight lines normal and curves locally parallel to the shock, all moving with

the shock normal speed Dn.
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Figure 1. A snapshot showing the intrinsic coordinates and the de�nition of the

boundary-edge angle !; in (a) for a diverging detonation and in (b) for a converg-

ing detonation. The speed of the wave is inuenced by two factors, the conver-

gence/divergence and the location of the sonic surface.

2.1. Interior ow

The weak shock-curvature limit de�ned by � = O(�), where � � (reaction �
zone scale)=(shock radius of curvature), is the basis of most theoretical anal-

ysis of 2D detonation. This limit envisions that O(1) changes in the �eld vari-
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ables occur over O(��1) distances in the �-direction, and the ow velocity in

the �-direction is no greater than O(�). Under these assumptions, the DSD-

related time derivatives are O(�), the ow is principally in the �-direction, and

is \nozzle"-like (see Fig. 1), and 2D e�ects enters the ow only parametri-

cally, via �(�; t). This limit allows for time dependence on the O(1) reaction

scale, provided no O(1) velocities are generated in the �-direction. The various

streamtubes then communicate with one another only through the shock-surface

compatibility condition (i.e., through the LS equation or whichever propagation

method we use). The DSD reaction zone equations are:

( _�) + �(Dn � U)� = ��U� ; (1)

�( _U)� P� = 0 ; (2)

�2( _e)� P ( _�) = 0 ; (3)

where (_) � (@=@t)�;� + (Dn�U)(@=@�)t;� and �, U , P , e(P; �; �q), �, and q are
the density, laboratory particle velocity in the �- direction, pressure, speci�c

internal energy, degree of reaction, and heat of detonation, respectively. Hence-

forth, when t, �, �, etc. are used as subscripts they denote partial derivatives.

The master equation, derived from Eqs. (1{3) helps us analyze the 2D reaction

zone

Pt + �(Dn � U)Ut = ��[(Dn � U)2 � C2]U� + � ; (4)

where � � �(e�=eP )R � �C2U� and C, �(e�=eP )R � 0, and ( _�) � R � 0 are

the sound speed, heat-release rate, and chemical rate law, respectively.

In its simplest realization, DSD theory assumes that Dn=DCJ = 1 + O(�),

that the departures from the Zeldovich-von Neumann-Doring (ZND) limit are

small, and neglects the inertia of the reaction zone (setting t derivatives in

Eqs. (1{4) to zero). The reaction-zone structure is then obtained by solving

the steady form of Eqs. (1{3), subject to the shock conditions and generalized

Chapman-Jouguet (CJ) condition obtained from Eq. (4) (i.e., (Dn�U)2�C2 =

0 when � = 0, provided that � � 0). This de�nes an eigenvalue problem that

obtains Dn(�). Figure 1 shows that two e�ects contribute to Dn � DCJ : (1)

the divergence and (2) the movement of the sonic surface. For weakly conver-

gent systems, e�ect (1) dominates and Dn(�) � DCJ is derived by requiring

(Dn � U)2 � C2 = 0 at the end of the reaction zone (i.e., � = 1). Details

can be found in (Bdzil 1981), (Bdzil & Stewart 1986), (Stewart et al. 1995),

(Aslam et al. 1995) and references therin. Importantly for Dn(�), the shock

evolves by parabolic dynamics and so is smooth. For real heterogeneous solid

explosives, R is not well known. Then Dn(�) is determined directly from ex-

periment. The Dn(�) for the explosive PBX 9502 is shown in Fig. 2a. Note the

O(1) variations of (DCJ �Dn)=DCJ .
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2.2. Boundary conditions

The slow variations in the �-direction that are a part of DSD can break down at

explosive boundaries. There the ow can be fully 2D and time-dependent on the

O(1) reaction-zone scale (Bdzil & Stewart 1986). On the slow-time DSD scale,

this region can appear to be steady. Then the DSD and boundary regions are

coupled as follows: (1) the DSD region drives the boundary with information on

the shock slope and Dn, and in turn (2) the boundary region uses this data to

return a (possibly) modi�ed shock slope, etc. (Bdzil 1981). Using the boundary

angle ! de�ned in Fig. 1, DSD supplies !in to the boundary ow, which then

returns !out to the DSD region. The boundary is itself characterized by two

angles that depend on the explosive/inert pair being considered: a critical angle

!s and a con�nement angle !c.

We've distilled these interactions into the following recipe. If !in < !s, then

!out = !in; otherwise, !out = !c. The boundary dynamics are considered in

more detail later in this paper.

3. Front propagators

Together, the Dn(�) function and the boundary conditions provide a complete

dynamical description of the detonation front at the DSD level. A second

element is needed to propagate the front: a shock compatibility condition that

relates how changes in the speed of the front a�ect its shape. One of the most

widely used forms of this condition is Whitham's ray method (Whitham 1973).

Every section of the detonation front advances along a system of rays that

resembles the bicharacteristic rays of geometrical optics. Although physically

appealing, such methods can be logically complex. The front-attached rays

converge and diverge with the front, which can lead to numerical problems.

This is one member of the family of marker-particle or Lagrangian methods.

Such methods are not well suited for engineering applications where the problem

geometries are complex.

3.1. Level-set method

Osher and Sethian (1988) devised a powerful algorithm for propagating fronts

with curvature-dependent speed. Their method obviates the need for the com-

plex logic to treat collisions and avoids the problem of marker-particle meth-

ods. They consider the shock as a level curve C(x; y; t) = 0 embedded in a

higher-dimensional LS function  (x; y; t) that's de�ned on an Eulerian grid.

The evolution equation for the LS function is derived by using the property

 (x; y; t) = constant along a level curve to obtain

 t + ~Dn(�) � ~r = 0 : (5)
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Equation (5) is the LS-method surface compatibility condition.

The precise form selected for  (x; y; 0) is unimportant, however,  (x; y; 0)

must be single valued. This insensitivity requires that; (1) Dn depend only

on data from a single curve and (2) that the level curves not cross with time.

The �rst property is automatic, since Dn(�). The second property follows from

the fact that the distance between level curves, as measured by d(x; y; t) =

j~r (x; y; 0)j=j~r j, does not go to zero. By way of example, for Dn = DCJ���
with � � 0, the d-equation (which is derived from Eq. 5) is

dt +DCJ~n � ~r(d) = ��2d ; (6)

for a cylindrically symmetric system. Since ��2 � 0 and d(x; y; 0) = 1, d

increases with time. The result d(x; y; t) > 0 continues to hold for fully 2D sys-

tems with strong divergence at the boundaries (Aslam et al. 1995). In practice,

Figure 2. The Dn(�) for a typical condensed phase explosive, PBX 9502 is shown

in Fig. 2a. Burn time contours for an engineering-style problem obtained with the

LS-method are shown in Fig 2b. The dark areas are obstacles.

we assign  = 0 to the shock, with  > 0 in unburnt material and  < 0 in

burnt material. The burn time tb(x; y) is taken as the �rst time that  < 0 at

a point. Figure 2a shows the result of a LS calculation of the burn times for an

engineering-style problem. Initially, the detonation is a semi-circle with origin

(0,0) and obeys Dn = 8 mm=�s � � � 66 mm2=�s everywhere. Bifurcation,

merging, convergence, and divergence of the wave are all well captured. All of

these ideas easily carryover to 3D.

4. Hydrodynamic simulations using DSD

The work that has gone into DSD was motivated by the need to capture

reaction-zone e�ects in numerical simulations of engineering systems. Two ele-

ments are required to accomplish this goal: (1) accurate front evolution and (2)
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an ability to deposit the proper detonation state (i.e., P (Dn), �(Dn), U(Dn))

at the front.

To address element (2), we've developed a numerical reaction-zone model

that uses a \pseudo" divergence 
 in place of � in simulations, so that a det-

onation state consistent with Dn is captured. To eliminate precursors to the

Dn(�) wave, we built a model around the reaction zone equation of state (EOS),

e(P=�; �; q), which together with the trigger provided by the DSD burn times

tb(x; y), causes the numerical \reaction zone" to be on the weak detonation

branch. Starting with P = 0 and � = 0, at tb(x; y) the explosive is rapidly

burned (i.e., � ! 1 in about the time it takes the wave to traverse one com-

putational zone). From Eq. (4) it follows that the ratio �=R determines Dn.

Since this nonphysical numerical reaction rate ~R is associated with the size of

the computational zones, we replace U� in Eqs. (3{4), by

U�) 
 ~R ; R) ~R ; (7)

and then solve for Dn(
). Elimination then yields 
(�), the \pseudo" diver-

gence required to get the numerical detonation to be compatible with Dn(�).

This 2-part model is implemented in a second-order, 2D, multimaterial, Eule-

Figure 3. Pressure contours for Mesa calculations of the detonation cylinder test.

The detonation wave is moving to the right. Frame (a) shows the results at t = 8 �s

from the Dn = DCJ model, (b) shows the results for the Dn(�) model at t = 12 �s.

rian grid hydrodynamics code at Los Alamos called Mesa (Holian et al. 1989).

The results of two calculations of the detonation Cu-cylinder test (one using the

standard Dn = DCJ model and the other using DSD) are displayed in Fig. 3.

The di�erence in the timing and wave shapes is striking.

5. Boundary-condition study

A complete theoretical analysis of fully 2D, reactive edge ows is out of reach.

Here we present some results obtained using high-resolution numerical simu-

lations. A limited amount of supporting theory is o�ered to help with the

interpretation of these results.
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We study a simpli�ed Euler uid model, and use a polytropic EOS with a

large  to mimic condensed phase explosive, where

e =
P

( � 1)�
� q� ; (8)

with  = 3, an initial density �0 = 2000 kg=m
3
, and a heat of detonation

q = 4 � 106 m2=s2, so that PCJ = 3:2 � 1010 N=m
2
is large. A simpli�ed

state-independent rate law is used (k = 2:51� 106 s�1)

( _�) = R = k
p
1� � ; (9)

for which the 1D steady-state reaction-zone length is 4�10�3 m and the particle

reaction time is 0:8 �s. The numerical simulations were done using a second-

order Godunov code called Caveat (Addessio et al. 1990). The grid size used

in the calculations was 2 � 10�4 m in the streamwise direction. Two types of

boundary interactions are studied here. For both, the detonation is initially

a plane ZND wave whose direction of propagation is colinear with a at rigid

wall (i.e., ! = 90�). Problem (1) considers the response of the detonation to

a sudden loss of con�nement, while the interaction of the detonation with a

converging, rigid wedge is studied in problem (2).

Figure 4. Response of a detonation reaction zone to a sudden loss of con�nement.

Frames (a), (b), (c), and (d) show the reaction-zone pressure contours, the evolv-

ing shock-front shape, late-time pressure contours, and an experimentally measured

shock-front shape, respectively.
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5.1. Loss of con�nement

A collection of the results from problem (1) is shown in Fig. 4. Propagat-

ing upwards initially, the detonation loses con�nement along its right bound-

ary at t > 0. Figure 4a shows strong 2D ow at the edge as evidenced by

P� = O(1) and the rapid change in the shock slope (! changes from 90�

to 55�). The Prandtl-Meyer expansion that develops limits the decrease in

pressure at the shock which results in a �xed shock-edge angle after a very

short transient, as shown in Fig. 4b. The rarefaction moves along the shock at

(
q
C2 � (Dn � U)2)�=0 = 0:7DCJ . Figure 4c shows a broadly curved DSD wave

at t = 24 �s. The value !c = 55�, corresponds to a ow that is exactly sonic

as measured with respect to the shock-edge intersection point. A discussion of

the e�ect that increasing con�nement and changes in !in have on these results

is given elsewhere (Bdzil & Stewart 1986, Aslam et al. 1995). The experimen-

tally measured shock-arrival trace for a Re = 5 mm radius detonating cylinder

of PBX 9502 is shown in Fig. 4d. The !c = 45�, corresponds to the sonic angle

for this material. For this explosive, �r = 1 mm. Measured on this scale, the

shock for this 10-mm diameter explosive is broadly curved.

5.2. Converging wedge

A collection of results from problem (2) is shown in Fig. 5. A ZND detonation

propagating to the left meets a rigid, converging wedge at x = 190 mm (x = 0

is at the left). Standard three-shock theory for a CJ detonation predicts Mach

reection for !in � 45�. A simulation of the 50� wedge problem shows regular

reection. The evolving shock and Dn for both a 40� and 20� wedge shown in

Fig. 5a display irregular reection. The pressure contours at t = 24 �s shown

in Fig. 5b reveal that the irregular reection grows slowly for the 40� case.

Although the structure looks somewhat classical, the reected wave is clearly

dispersed.

The pressure contours at t = 24 �s for the 20� wedge reveal a totally nonclas-

sical von Neumann reection (Colella & Henderson 1990). The leading shock

is broadly curved with no evidence of a reected shock. This is a consequence

of the di�raction of the reected wave by the reaction-zone ow gradient. By

contrast, the Mach reection of an inert shock of comparable strength, shown

in Fig. 5d, is classical. Figure 5e shows \Mach" reection during the collision of

two PBX 9502 detonations. These measurements were made at Los Alamos by

Larry Hull (Hull 1995). With the progress of time (time advances to the left),

the wave-interaction region (the left-most part of each trace) becomes wider

and more \rounded."

We present a qualitative theoretical argument to help understand these ob-
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Figure 5. The oblique interaction of a resolved reaction zone detonation with a rigid

wedge. Frames (a), (b), (c), (d), and (e) show the evolving lead shocks for a 40� and

20� wedge, pressure pro�les at t = 24 �s for the 40� and 20� wedge, a strong inert

shock over a 20� wedge and the curved \Mach" interaction for PBX 9502, respectively.

servations. Equation (4) is exact along the shock

(D2

n)t =
( + 1)2

3

 
( � 1)

( + 1)
D2

n

!
(U�)�=0 +

( + 1)

( � 1)

D2

CJ

6
(R)�=0 �

4

3( + 1)
D3

n� :

(10)

Di�erentiating Eq. (10) with respect to �, using the shock-compatibility condi-

tion, and then transforming the resulting equation to a reference frame moving

at acoustic speed along the shock (� = �(
q
C2 � (Dn � U)2)�=0 with d! �

d�� �dt), allows us to derive an equation for the amplitude of the leading edge

of a weak 2D disturbance moving into a 1D ZND detonation

4 ~K� = �
2( + 9)

3( + 1)
~K2� ( + 1)

6( � 1)
(1��) ~K +

2( � 3)

3
p
2 � 1

~K~!+O((U�!)�=0) : (11)

The variable ~K � (�DCJ=k)wavehead is the scaled shock curvature, � = kt
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is the scaled time, and � measures the state dependence of the rate (e.g.,

R = k
p
1� � exp (�Dn=DCJ)). The strength of the 2D disturbance is ~K,

with j ~Kj ! 1 denoting triple-point formation on the shock. Neglecting the

O((U�!)�=0) term in Eq. (11), setting  = 3, and solving, one �nds that for

� < 1, ~K ! 0 when ~Kt=0 > �(1 � �)=6 and ~K ! �1 otherwise. Thus,

su�ciently weak convergence does not lead to triple points. This is what we

see in our simulations. Suppressing the reaction-related terms in Eq. (11), one

�nds that all levels of convergence lead to triple points for inert ows. The DSD

boundary conditions derived from this example are: (1) when !in < !s = 35�,

then !out = !in and (2) when !in > !s = 35�, then !out = !c = 90�.
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