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1 Introduction

Here we are concerned with describing the dynamics of multi-dimensional det-
onation as a self-propagating surface. The detonation shock surface has been
shown under certain circumstances to be governed by an intrinsic relation be-
tween the normal shock velocity and the local curvature, obtaining a Dn − κ
relation. Once the initial shock position is given, the subsequent motion of the
shock can be determined by solving a scalar partial differential equation (PDE)
for the shock position. The ingredients for prediction of the motion of the shock,
include the Dn − κ relation, determined from theory or experiment, the ini-
tial configuration of the shock and confinement boundary conditions. Thus we
are also concerned about efficient numerical solution of the scalar PDE in three-
dimensions, in cases that include multiply-connected and disjoint shock surfaces.
This has led us to consider the level-set techniques of Osher and Sethian [1],
which are naturally suited to these problems.

In what follows, we discuss examples of propagating surfaces, from formula-
tions in combustion and heat transfer to which level-set methods apply. In Sect.
3, we discuss the specific example from detonation theory, which summarizes
our recent work in [2]. In Sect. 4, we briefly explain the derivation of the Dn−κ
relation, in the context of detonation and mention some recent extensions of
the theory, that includes shock acceleration terms [3]. These new results can all
be summarized as a replacement of the Dn − κ relation, by a relation of the
form F (Ḋn, Dn, κ) = 0 where Ḋn is the acceleration of the detonation shock
along its normal. Importantly, the resulting equation is hyperbolic in character
as opposed to parabolic, for a simple Dn − κ relation. Finally we indicate the
interesting new features of the dynamics that can be observed in the detonation
shock surface evolution, and comment on their relevance to the formation of
sustained detonation cells.

2 Examples of Propagating Surfaces

Theory for propagating surfaces arise naturally from discussions of phase trans-
formation, that involve a jump in enthalpy across the surface. Examples include
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solidification and the Stefan problem, flame propagation and detonation propa-
gation. In the first case, the surface is the boundary between solid and liquid; in
the second case the flame surface, in the last case the detonation shock surface.
In all three cases, the actual surface is not a material surface, but a phase sur-
face through which material passes. The surface is assumed to separate the two
phases (called here, burnt and unburnt), and the normal unit vector is defined
to be positive in the direction of the unburnt material. At each point on the
surface, the normal velocity is designated Dn and the local total curvature (the
sum of the principle curvatures) is designated by κ. Further, κ is assumed to be
positive when the surface is convex, relative to a normal pointing towards the
unburnt material.

Next we delineate between two types of propagating surfaces that can be
treated successfully with the level-set techniques; Not Self-Propagating Surfaces
(NSPS) and Self-Propagating Surfaces (SPS). We distinguish these two cases as
follows. We define a surface that is Not Self-Propagating to be one that requires
information normal to the surface to define the normal velocity Dn. For an NSPS
one includes relations of the form F (Dn, κ,x, t, n+) = 0, where F generally
depends on the curvature, the spatial position of the wave, time, and the values
of quantities on one side (here the burnt side) of the surface. The slowly-varying
hydrodynamic limit of a flame, described in [4], is an excellent example of an
NSPS.

In contrast, we define a Self-Propagating Surface that only requires informa-
tion defined in the surface to determine normal velocity Dn. So for an SPS one
includes relations of the form F (Dn, κ,x, t) = 0, or F (Dn, κ,x, t, Ḋn) = 0, where
F generally depends on the curvature, the spatial position of the wave, time and
possibly the self-acceleration of the surface, in its normal direction. Examples of
SPS with Dn of the form Dn = G(κ) include the simple Markstein flame, (see
[5]), or the simplest version of the Dn − κ relation obtained from Detonation
Shock Dynamics (DSD); Dn = DCJ − ακ, where DCJ and α are positive con-
stants. As we mention in Sect. 4 the acceleration term Ḋn also arises naturally
in the description of weakly-curved detonation and enlarges the dynamics that
is considered in the DSD-theory.

3 Level-Set Methods: Tools for Computing the Dynamics
of Interfaces

Here we outline the level-set method and explain its application and utility as a
tool for computing the dynamics of propagating interfaces. First, notice that an
interface (or surface) is a subset of lower dimensionality than the space that it
travels in. The level-set technique solves for a field function ψ(x, t) that depends
on physical space and time, and the field identifies surfaces of constant values
of ψ. The surface ψ(x, t) = 0, is typically identified with the surface of physical
interest. Therefore, the computational task involves computing a field in space-
time, and one then exhibits the surface of interest by searching for the special
surface ψ = 0.
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Fig. 1. Schematic of a propagating surface. The outward normal points toward ”unre-
acted” material. The blow up indicates a layer, within the structure of the surface that
is has physics that may control its propagation, like a reaction-zone

This imbedding method is in contrast to what are sometimes known as surface
methods. Differential representations of the surface, are based on surface param-
eterizations, while discrete representations of the surface often include marker
particles in the surface or finite elements. With surface methods, one represents
the surface of physical interest by a representation of the same dimension. For
example, in two-dimensions, the detonation shock locus is a space-curve in the
(x,y)-plane and a numerical discretization represents the shock as a 1D array. For
a 3D application the shock surface is a 2D space-surface and the discretization
is represented by a 2D array.

While numerical methods based on surface parameterization can be very ef-
fective for many problems, and can yield results with high accuracy, they also
have substantial numerical and logical problems as the geometric complexity of
the underlying problem increases. If the surface rapidly expands or contracts,
markers must be added or removed. Surface markers can cross and the stability
and accuracy of the method can be lost. The logical complexity of the pro-
gramming, for a surface parameterization method can be overwhelming if one
considers problems that have surfaces that are disjoint or multiply-connected.

It might seem that additional computation is required for the level-set tech-
niques, since they solve for a field in the dimension of the physical space. One
compensates for that by using an efficient, high-accuracy numerical method, that
is logically simple to program; a point that was made dramatically in [1]. For
our applications, we have found that the advantages of the logical simplicity of
implementation of the level-set methods, easily compensates for any perceived
increase in computational cost due to working in a higher dimensional space .
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3.1 Detonation Shock Dynamics

Detonation Shock Dynamics (DSD) is a name that we use to describe a collec-
tion of results derived from an asymptotic theory that describes the evolution
of a multi-dimensional, curved detonation. The detonation shock is supported
by a combustion reaction-zone that trails behind the shock, and the radius of
curvature of the detonation shock is assumed to be large when compared to
the reaction-zone thickness. Most of the results ([6], [7], [8]) that have been de-
veloped so far, assume that the speed of the detonation is close to its, plane,
Chapman-Jouguet (CJ) value. In particular, the theoretical results give explicit
expressions for the Dn − κ relation for an explosive material, described by the
Euler equations, with a specified equation of state and reaction rate law. The
work mentioned in [3], and in Sect. 4, extends this to include Ḋn.

The theory of DSD suggests that the detonation shock, in some regimes,
propagate according to a material specific evolution law. This theoretical sug-
gestion has provided the motivation to verify the assertion experimentally in
explosive systems. Fig. 2, shows a facsimile of the experimentally determined
Dn − κ curve for a condensed explosive PBX9502. For positive curvature, the
experiments were conducted by Davis and Bdzil of Los Alamos National Labo-
ratory (LANL), [9], and for those of negative curvature, the experiments were
conducted by Hull of LANL, [10]. The two sets of experiment were carried out in
quite different geometries. Davis and Bdzil’s experiments were for round sticks of
explosive of different diameters, ignited at the bottom. Hull’s experiments were
generated by an entirely different sort of experiment, where two, separated point
detonations were ignited far within a block of the explosive and the waves then
eventually merged to form a single detonation shock. Importantly, the combined
data of the two separate experiments share the Chapman-Jouguet (CJ) value
for the detonation velocity at zero curvature, and have the same slope dDn/dκ
where they join.

The Bdzil-Davis reduction of the experimental data for PBX9502, for the
positive curvature side, also indicates an extinction point; defined here as a
maximum value of positive curvature, beyond which the Dn−κ relation may not
be continued. Under certain assumptions, theory also shows a similar property
for Dn − κ curves.

Without further explanation or assumption in this section, we will assume
that we have a Dn − κ relation that describes the motion of a detonation shock
for some range of normal velocities and curvatures, such as the ones mentioned
above. A Dn − κ relation then can be assumed to have the form

Dn = DCJ − α(κ). (1)

where α is a function of κ. The Dn − κ relation based on intrinsic description
corresponds to a SPS, in the sense defined in Sect. 2. If α = 0, one is lead to a
Huygens’ construction for the motion of the shock surface. In the presence of non-
zero α, one can propagate the surface by a modified Huygens’ construction. If
Dn is a monotonically decreasing function of the curvature, then the underlying
dynamics of the surface are those of a parabolic partial differential equation.
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Fig. 2. Calibrated Dn − κ response of condensed explosive PBX9502

Indeed under certain assumption the shock slope of the shock surface is shown
to obey Burgers’ equation.

3.2 Level-Set Formulation

Next we turn to the level-set technique as a way to solve for the motion of the
surface, given this specific example of DSD. It is assumed that there is a field
ψ(x, t) that will define level surfaces of the form, ψ(x, t) = constant. The shock
location for all time, will be defined as the special surface ψ(x, t) = 0. The initial
location of the shock will be associated with the locus ψ(x, 0) = 0.

The ψ function obeys the level-set equation which is derived as follows. On
any level curve ψ(x, t) =constant, the time derivative of ψ in a frame, traveling
with the curve is zero, i.e.

dψ

dt
=
∂ψ

∂t
+
dx
dt
·∇ψ = 0, (2)

where the derivative dx/dt ≡ D, is the pointwise velocity of the surface. By
using the definition of the normal n̂ =∇ψ/|∇ψ| and noticing that D ·∇ψ can
be rewritten as Dn|∇ψ|, the above equation, now referred to as the level-set
equation, can be restated as

∂ψ

∂t
+Dn|∇ψ| = 0. (3)

If Dn is a constant (the Huygens’ construction), then the level-set equation is a
Hamilton-Jacobi equation. If Dn is a function of the curvature, then the level-set
equation is a Hamilton-Jacobi-like equation. Importantly, the type of the equa-
tion is controlled by the highest order derivative that appears. For example in
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the current context, if Dn is a monotonically decreasing function of the curva-
ture, then the level-set equation is at most first order in time, is second order in
space, and is classified as a parabolic partial differential equation (PDE).

To illustrate the level-set PDE more completely in the form used for DSD
applications, one needs the Cartesian expression for the curvature. The curvature
is generally represented as κ =∇ · n̂, which in 2D reduces to

κ =
ψxxψ

2
y − 2ψxyψxψy + ψyyψ

2
x(

ψ2
x + ψ2

y

)3/2 . (4)

The PDE for ψ in a Cartesian frame, is wholly prescribed once the function
Dn(κ) is given. The initial data for ψ can be generated as follows. At time t = 0,
define ψ(x, 0) = 0 to be the initial shock position. Note that one could have more
than one closed surface identifying initial shocks. Then the remainder of the ini-
tial data for the field is defined by setting the value of ψ at any point (x,y,z)
equal to the minimum signed distance to the detonation shock. Fig. 3 shows
an example of the level-set function ψ defined initially (as the minimum dis-
tance function) and at a later time. The problem considered is two cylindrically
expanding shocks that are at first separated and then merge.

The numerical solution of the PDE with given initial data and subject to
boundary conditions, generates an approximation to the field ψ(x, t), and the
location of the shock is then simply found by searching for the level surface
ψ = 0. The surface ψ = 0 is easily determined by recording when ψ passes
through zero. A tabular function of crossing times, tcross(x, y, z), is found from
the computation. The shock location at given time is simply a contour of constant
crossing time.

Fig. 3. The level-set function ψ defined initially (as the minimum signed distance
function) and at a later time, for the example of two cylindrically expanding shocks
that are at first separated and then merge
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3.3 Boundary Conditions

We give a brief summary of the boundary conditions that are applied in the DSD
application. A detailed description of the boundary conditions and their rationale
is found in [2]. The need for boundary conditions comes from the application.
The problems of interest in explosive design mostly involve domains of finite
size, and the collision of the detonation shock with confinement boundaries. In
typical explosive systems, one places the unreacted explosive in a container.
After having been ignited, the detonation sweeps through the system and the
detonation shock intersects the interfaces. Often the confinement is a thin layer
of metal which separates the explosive products from the ambient atmosphere.

The boundary conditions that have been considered so far, are motivated by
analysis that models the interaction of the detonation shock with the confinement
boundaries, and include three simple categories: i) shock-edge angle boundary
conditions, ii) reflective boundary conditions, and iii) continuation boundary
conditions. The shock-edge boundary condition was put forward by Bdzil in
[11], and used later in [6]. It states that in certain instances, the angle that the
shock makes with the interface is fixed, and that the fixed angle is a material
constant for an explosive/confining material pair. Let the outward normal of
the detonation shock at the edge be represented as n̂edge, and let the outward
normal of the interface, where the detonation shock and the interface intersect,
be represented as n̂mat. The interior angle between those two direction vectors
such that cosω = n̂edge · n̂mat, is some fixed value ω = ωc. For example, the
angle for a PBX9502 explosive with a particular material as edge confinement is
a fixed number; a typical value for explosive detonated without confinement is
45 degrees.

The reflective boundary condition corresponds to a detonation shock that
is normal to the interface, hence ω is equal to 90 degrees. Finally the contin-
uation boundary condition is used in certain circumstances, if the detonation
wave is highly oblique to the interface and the interior angle ω is close to zero.
Then the detonation shock phase velocity would be so fast that the support-
ing reaction-zone is not influenced by the boundary. In this case, no boundary
condition is applied at all. Continuation means that the the detonation shock is
extended beyond the boundary as a smooth interpolant, as needed to determine
the numerical solution, but no angle boundary condition is applied.

In practice, for a DSD explosive application, all three of these boundary
conditions might be applied according to the interior angle ω that is monitored
at the edge interface. One of the most important points to stress is that all of the
boundary conditions described above, are at most functions of the derivatives of
ψ. Thus a level curve propagated according to the Dn − κ relation, will evolve
only according to data developed in its own surface. The boundary conditions
that have been considered for the DSD applications, do not change this property
and thus one is lead to a class of problems in finite domains that can be solved
consistently using level-set techniques.
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3.4 The Recipe for DSD Application Using Level-Set Methods

The recipe for using level-set methods for the DSD application can then be
summarized in a as follows. 1) Determine the initial detonation shock locations
and designate them as ψ(x, 0) = 0. 2) Define the ψ field everywhere at time
t = 0 say, by setting ψ equal to the minimum signed distance to the detonation
shock. 3) Solve the level-set equation for the ψ field. 4) At the boundary, apply
the boundary condition for each level curve, as if it were the physical shock of
interest. 5) Find the physical shock at any time by searching for ψ(x, y, z, t) = 0.

3.5 The Numerical Methods

We give a brief description of an efficient general numerical method for solving
the level-set equation for the DSD application, on a fixed, Eulerian, finite dif-
ference grid. For the interior algorithm, we follow Osher and Sethian, [1]. The
normal velocity Dn is explicitly written as DCJ − α(κ), where if the second
term was absent, then one solves only the Huygens’ construction. The update
of ψ is split into a Huygens’ advection followed by a diffusive correction. The
Huygens’ advection uses a second-order ENO scheme. The diffusive correction,
due to the curvature terms in α(κ) is approximated by central differencing. The
boundary conditions are implemented with central differences and are second-
order accurate. The reader is referred to [2] for more details. Suffice it to say
that the advantage of the ENO-based schemes for the advection is the simplicity
of implementation and accuracy of the results.

4 Asymptotic Theory

Here we summarize the asymptotic theory that is developed in [3]. A standard
mathematical model of explosive materials is adopted which describes a com-
pressible Euler fluid with an ideal equation of state, and Arrhenius form for the
reaction rate r,

e =
p

ρ

1
γ − 1

−Qλ, r(p, ρ, λ) = k(1− λ)νe−E/(p/ρ), (5)

where e is the specific internal energy, ρ is the density, p is the pressure, λ is
the reaction progress variable, γ is the polytropic exponent, Q is the heat of
combustion and k, ν and E are respectively the pre-multiplying rate constant,
the depletion factor and the activation energy. The laboratory-based velocity
will be represented by u. From here on, we adopt the notation convention that
a quantity with a (̃) refers to a dimensional quantity and the quantities without
a tilde are dimensionless quantities, and scaled with respect to the dimensional
unit. In particular, the length, velocity and time scales are given by ˜̀

rz, D̃CJ

and ˜̀
rz/D̃CJ . respectively. The length ˜̀

rz, is taken to be the characteristic 1D,
steady reaction-zone length. The density scale is ρ̃0 and pressure scale is ρ̃0D̃

2
CJ .

Consequently the sound speed, reaction rate, curvature and heat of combustion
appear as c = c̃/D̃CJ , r = r̃ ˜̀

rz/D̃CJ , κ = κ̃˜̀
rz, q = Q̃/D̃2

CJ = 1/[2(γ2 − 1)] .
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(The plane, steady, CJ detonation velocity in the strong shock approximation is
given by, D̃2

CJ = 2(γ2 − 1)Q̃ ).
The jumps across the lead detonation shock are determine by the equation

of state and the upstream state. We will assume that the upstream state is
quiescent with u = 0, density ρ0 and ambient pressure p0. For convenience, we
will assume that the lead detonation shock is sufficiently strong so that the strong
shock approximation, holds. The normal shock relations (in the strong shock
approximation) for an ideal gas moving into an ambient atmosphere, reduce to

Un = −γ − 1
γ + 1

Dn, ut = 0, ρ =
γ + 1
γ − 1

, p =
2

γ + 1
D2
n, λ = 0, at n = 0. (6)

where the n− and t− subscripts respectively refer to the normal and tangential
components of the velocity in the shock-attached frame.

4.1 Intrinsic, Shock-Attached Coordinates and Governing Equations

In order to make the analysis tractable, it is essential to write the equations
of motion in a suitable form. Given that the material derivative is given by
D/Dt ≡ ∂/∂t + u ·∇, then the Euler equations, with reaction, are given by
Dρ/Dt+ρ∇ ·u = 0, ρDu/Dt+∇p = 0, De/Dt+pDv/Dt = 0, where v ≡ 1/ρ,
and Dλ/Dt = r(p, ρ, λ).

Intrinsic, shock-attached coordinates, are used to describe curved, time-evolving
detonation waves. We restrict the formulas shown here to 2D to simplify the
presentation; the results apply equally well in 3D. The shock surface can be
represented quite generally in terms of laboratory-fixed coordinates x = (x, y)
by a function ψ(x, t) = 0. This equation constrains the lab-coordinate position
vectors in the surface to x = xs(x, y, t). The shock surface can also be repre-
sented by a surface parameterization x = xs(ξ, t), where ξ measures length along
the shock curve, relative to the reference point xs(0, t). The outward normal (in
the direction of the unreacted explosive) and unit tangent vector in the shock
surface, (which form a local basis) are given by n̂ =∇ψ/|∇ψ|, t̂ = ∂xs/∂ξ. The
total shock curvature is given by κ(ξ, t) = ∇ · n̂. Finally, the intrinsic coordi-
nates are related to the laboratory coordinates by the change of variable given
by x = xs(ξ, t) + n n̂(ξ; t), where the variables n, ξ are respectively, the distance
measured in the direction of the normal to the shock wave, and the arc- length
measured along the shock curve.

Next the equations of motion are transformed to this shock-attached, intrin-
sic frame, i.e. from (x,y,t)-coordinates to (n, ξ, t) coordinates. In particular we
note, that the normal shock velocity and curvature are only function of ξ and
t, i.e. Dn = Dn(ξ, t) and κ = κ(ξ, t). The relevant normal velocity that appears
subsequently is Un = un − Dn. The manipulations of the transformation are
lengthy but straightforward and the transformed equations have a direct corre-
spondence to the Euler equations. Importantly, the curvature appears explicitly
in the transformed equations.
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For the transformed equations, we retain only the explicit time dependence
and the first curvature effects and write down a set of approximate equations
to analyze, that are valid under the assumption that |κ| << 1. Consistent with
the normal shock relations, for a shock propagating into a quiescent material,
we neglect uξ in this analysis and take it effectively to be zero. The equations
are then written in a quasi-conservative form as

∂(ρUn)
∂n

= −κρ(Un +Dn)− ρ,t, (7)

∂(ρU2
n + p)
∂n

= −κρUn(Un +Dn)− ρ,tUn − ρ(Un,t +Dn,t), (8)

∂

∂n

(
1
2
U2
n +

c2

γ − 1
− qλ

)
= −(Un,t +Dn,t)

− 1
Un

(
1

γ − 1
p,t
ρ
− γ p

ρ2

ρ,t
γ − 1

− qλ,t
)
. (9)

The rate equation can be written as

∂λ

∂n
− r

Un
= −λ,t

Un
. (10)

An auxiliary equation, referred to as the master equation, can be written

(c2 − U2
n)
∂Un
∂n

= qr(γ − 1)− κc2(Un +Dn) + Un(Un,t +Dn,t)− vp,t. (11)

Note that the intrinsic coordinate, time derivative appearing above is ( ),t =
(∂/∂t)n,ξ+(∂ξ/∂t)x(∂/∂ξ)n,t, where (∂ξ/∂t)x is the rate of change of arclength
along the shock. Importantly, (∂ξ/∂t)x is independent of n to the order being
considered. Reinterpreted in Cartesian coordinates, the operator ( ),t is simply
the time-rate of change in the shock-normal direction (see references [2] and [3])

( ),t =
(
∂

∂t

)
x

+Dnn̂ ·∇. (12)

The analysis proceeds the assumption that the right-hand side of the struc-
ture equations (7) - (10) are in some sense uniformly small and can be ap-
proximated by a quasi-steady, plane solution. One applies the shock boundary
conditions, (6) at n = 0 and attempts to generate a uniform solution throughout
the reaction-zone behind the shock.
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4.2 The Generalized CJ Conditions

The master equation (11) exhibits the special character of the sonic point that
generates a condition that can be used, under appropriate circumstances, to
generate the eigenvalue relation between curvature and the normal detonation
speed, and the self-acceleration, Ḋn.

Suppose the flow has a sonic locus such that

η = c2 − U2
n = 0, (13)

then equation (11) is satisfied at that point, in general, only if, the right-hand
side, vanishes simultaneously at that point, i.e.

qr(γ − 1)− κc2(Un +Dn) + Un(Un,t +Dn,t)− vp,t = 0. (14)

The pair of conditions (13, 14), called the sonic and the thermicity conditions
respectively, taken together are called the generalized CJ-conditions, after Wood
and Kirkwood, [13].

4.3 The Method of Successive Approximation

The problem outlined above, for quasi-steady, near-CJ, curved detonation, in the
absence of explicit time-dependent terms, has been solved by a layer analysis, in
[6], [7], [13], [8]. However in [3] we used a technique that is equivalent and perhaps
simpler, and is based on an integral formulation rather than the differential
formulation.

For the purpose of generating the corrections we assume that the detona-
tion velocity and the state corresponds to a quasi-steady, 1D solution, plus a
correction,

Dn = D + κD′, (15)

and

Un = −Dγ − `
γ + 1

+ κU ′, v =
γ − `
γ + 1

+ κv′, p = D2 1 + `

γ + 1
+ κp′, (16)

where ` =
√

1− λ/D2. The quasi-steady 1D solution referred to is exhibited in
the relations shown above by setting κ = 0. To keep notation to a minimum,
a * subscript refers to the first approximation for the fluid state and a prime
superscript is association with the correction to that approximation, e.g., Un =
U∗(`,D) + κU ′. We represent the leading order approximation to Dn, (Dn)∗,
where it would appear, by a plain D. All that is assumed for now, in the various
expansions (illustrated by the expansion for Un) is that the correction term
κU ′ ∼ o(U) as κ → 0. The resulting integral equations, shown below are been
further simplified by using the first approximation in the integrals. Integrating
(7 - 9) with respect to n, yields
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ρUn +Dn =
∫ n

0

[−κρ∗(U∗ +D)− ρ∗,t]dn̄, (17)

ρU2
n + p−D2

n = −
∫ n

0

[(ρ∗ − 1)D,t − κD(U∗ +D)]dn̄, (18)

1
2
U2
n +

c2

γ − 1
− qλ− 1

2
D2
n =

∫ n

0

[−p∗,t
D
− (1 +

D

U∗
)D,t]dn̄. (19)

The source terms in these equations are evaluated by switching the order of
differentiation and integration, since ( ),t is independent of n, and then evaluating
the resulting integrals using the substitution dn = (U∗/r∗)dλ. Since λ(n,D), care
must be exercised to remove the contribution from the integration limit when
( ),t is applied to the result. From the resulting expressions, one can evaluate
the approximate state at the CJ-point, by setting λ = λCJ . These formulas then
represent a correction of the Rankine-Hugoniot jump relations for the state at
the generalized-CJ point,

(ρUn)CJ = −Dn + κI1D
2 + J1D,t, (20)

(ρU2
n)CJ + pCJ = Dn

2 − κI2D3 + I1DD,t, (21)

1
2

(U2
n)CJ +

c2CJ
γ − 1

− qλCJ =
Dn

2

2
− (I1 + J2)DD,t, (22)

where the reaction rate integrals I1, I2, J1, J2 are defined by

I1 =
1

(γ + 1)

∫ λCJ

0

(1 + `)
r

dλ, I2 =
1

(γ + 1)2

∫ λCJ

0

[
(γ − `)(1 + `)

r
]dλ, (23)

I3 =
1

(γ + 1)2

∫ λCJ

0

`(γ − `)
r

dλ, I4 =
∫ λCJ

0

`

r
dλ, (24)

J1 =
1
γ

d(DI4)
dD

, J2 = − 1
D2

d(D3I3)
dD

. (25)

The formal algebraic solution of (20) - (22) are subject to the sonic constraint
that c2 = U2

n, determines the state ρCJ , (Un)CJ , pCJ and a condition on the
speed Dn, in the same way as is obtained for the simplest case of a steady,
plane, CJ wave. The result for Un, and the sonic condition c2 = U2

n can then be
used in (22) to obtain a condition between D,t, Dn, κ and λCJ , which is given
by:

D2
n − λCJ + γ2

{
[D2

n − κI2D3 + I1DD,t]2

[Dn − κI1D2 − J1D,t]2
−D2

n

}
+2(γ2 − 1)(I1 + J2)DD,t = 0, (26)
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which can be further simplified by retaining only the first correction in O(κ) and
O(D,t), which are assumed small to obtain the reduced (D,t, Dn, κ, λCJ) relation

D2
n−λCJ +2κγ2(I1−I2)D3

n+2DnḊn[(γ2−1)(I1 +J2)+γ2(I1 +J1)] = 0. (27)

where we have replaced D by Dn and D,t by Ḋn.
In most respects, (27) is the key result and holds generally for slowly varying,

weakly-curved detonation that have an embedded sonic locus in their structure.
The evolution equation is obtained once λCJ is estimated, which follows from
consideration of the thermicity condition (14).

4.4 Large Activation Energy

In the general case, the quantities, I1, I2, J1 and J2 are functions of Dn and Ḋn.
Thus it is generally difficult to write down the Ḋn−Dn−κ- relation in very simple
terms. For the purpose of illustration, we focus on the case of large activation
energy, which follows our work in [8]. In this case, the reaction-zone structure
is assumed to be that of an induction-zone, followed by an exponentially thin
reaction-zone. It follows that we can assume that λCJ is exponentially close to
one. Further we assume that Dn is close to one, and that quasi-steady time
variation in the induction zone is due to the motion of the shock, and that Ḋn

and κ are small and of the same order. Equation (27) can be further simplified
to

Dn = 1− γ2(I1 − I2)κ− [γ2(I1 + J1) + (γ2 − 1)(I1 + J2)]Ḋn. (28)

The characteristic reaction-zone length is estimated in terms of the induction
zone length scale, ˜̀

rz = k̃−1D̃CJexp[θ/c2s]/θ, and thus the reaction rate is ex-
pressed as

r =
(1− λ)ν

θ
eθ/c

2
s−θ/c2 . (29)

For γ < 2, the rate term is exponentially large outside the induction zone, hence
the values of the rate integrals I1, I2, J1, J2 only depend on their behavior in the
induction zone.

Consideration of the induction zone allows for calculation of the temperature
(or sound speed squared) perturbation in the zone, in terms of the curvature
and the slow acceleration of the detonation and small depletion, and obtains the
estimate for c2,

c2 = c2s + αλ+
c4s
θ

ln
{
θκβ

α

(
1− e−αλθ/c4s

)
+ exp[

(γ + 1)2

γ(γ − 1)
θ(Dn − 1)]

}
, (30)

where c2s = [2γ(γ − 1)]/(γ + 1)2 and
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α =
γ(3− γ)
2(γ + 1)2

, κβ = 4

(
γ(γ − 1)3

(γ + 1)4
κ+ 2

γ(γ − 1)(γ − 2)
(γ + 1)3

Ḋn

θ

)
. (31)

All that remains is the integral asymptotics, which can be summarized as
follows. For large θ, the dominant contributions to the integrals are close to the
shock, where ` = 1. It follows that J1 ∼ 0 and I1(γ+1)/2 ∼ (I1−I2)(γ+1)2/4 ∼
−J2(γ + 1)2/[4(γ2 − 1)] ∼ I, where

I =
∫ 1

0

1
r
dλ ∼

∫ ∞
0

e−θ(c
2−c2s)/c4sdz with. z = λθ. (32)

In turn, I can be estimated using the approximation for c2 in the reaction
rate r, as

I =
c4s
θκβ

[`n(σ)− `n(σ − θκβ
α

)], (33)

where

σ − θκβ
α

= exp

(
(γ + 1)2

γ(γ − 1)
θ(Dn − 1)

)
. (34)

Now we substitute these various results back into (28) to obtain the explicit
evolution equation

κβ =
α

θ
e(2/c2s−β/µ)θ(Dn−1)(1− e(β/µ)θ(Dn−1)). (35)

where

κµ = c4s[
4γ2

(γ + 1)2
κ+

2γ(4γ − 3)
γ + 1

Ḋn

θ
]. (36)

Note that when Ḋn is absent, then

κ =
α

θβ
ebθ(Dn−1)(1− eaθ(Dn−1)), (37)

where

a =
β

µ
|Ḋn=0=

(γ + 1)2(γ − 1)
4γ3

, b =
2
c2s
− a =

(γ + 1)3(3γ − 1)
4γ3(γ − 1)

, (38)

and

β

α
|Ḋn=0=

8(γ − 1)3

(3− γ)(γ + 1)2
, (39)

which agree with the steady (Ḋn = 0) Dn − κ relation established in [8]. Fig.
4 shows two representations of the Ḋn −Dn − κ - relation in the limit of large
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Fig. 4. Two representations of the Ḋn−Dn−κ relation in the limit of large activation
energy, plotted for θ = 2, γ = 1.2. The left plot shows a three-dimensional representa-
tion of the surface in the Ḋn, Dn, κ - space, with the imbedded curve, Ḋn = shown.
The right plot shows Dn − κ curves taken at different values of Ḋn.

activation energy. The left plot shows a three-dimensional representation of the
surface in the Ḋn, Dn, κ - space, and the right plot shows Dn − κ curves taken
at different values of Ḋn.

It can be shown, that the evolution (35) is hyperbolic. In addition for regions
where ∂Dn/∂κ|Ḋn < 0, the dispersion relation that is developed from a frozen
coefficient analysis at a point on the surface, corresponds to stable growth of
disturbances, superimposed on the solution to the evolution equation, while for
∂Dn/∂κ|Ḋn > 0, corresponds to unstable growth.

5 The Dynamics of a
·
Dn −Dn − κ - Relation

Given that the asymptotic analysis suggests that the shock surface evolves ac-
cording to a Ḋn−Dn−κ relation, we discuss some of the changes to the numerics
that are required in the level-set formulation, and illustrate some simple aspects
of the changes in behavior that are observed from the dynamics of a Dn − κ
relation.
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5.1 Numerical Methods

As in the original level-set method, if one considers the surface to be SPS, but
one that obeys a relation of the type F (Ḋn, Dn, κ) = 0, it is still the case that
the level-set equation holds, i.e.(

∂ψ

∂t

)
x

+Dn|∇ψ| = 0. (40)

But now instead of having Dn(κ), we have a relationship between the acceler-
ation of the shock in the normal direction in terms of the normal velocity and
curvature, Ḋn(Dn, κ). This dependence on Ḋn is equivalent to F (Ḋn, Dn, κ) = 0
being an additional pde rather than the algebraic constraint considered in Sect.
3. From (12) it is clear that this additional equation is then(

∂Dn

∂t

)
x

+Dnn̂ ·∇Dn = Ḋn(Dn, κ), (41)

where Ḋn is obtained by solving F (Ḋn, Dn, κ) = 0 and n̂ = ∇ψ/|∇ψ|. The
structure of the the operators in (40) and (41) is the same.

Equations (40) and (41) are a set of two, coupled, pde’s that must be solved
simultaneously, for the evolution of the shock surface, for a given Ḋn −Dn − κ
relation. Notice that not only the initial position of the shock is needed, but also
its initial velocity, as well. This 2-pde reformulation of the level-set method for
DSD can be used when F (Dn, κ) = 0, by treating F (Dn, κ)/ε, where 0 < ε¿ 1,
as a source term in (41).

5.2 Numerical Examples

Here we demonstrate numerically the differences between the evolution of a
wave front governed by a Dn − κ relation and a Ḋn − Dn − κ relation. The
computational domain is 0 ≤ x ≤ 5 and 0 ≤ y ≤ 1, with continuation boundary
conditions at x = 0, 5 and perfectly reflecting boundary conditions at y = 0, 1.
We run two experiments, where for both, the initial location of the wave is given
by x = .2(1 − cos(2πy)), or equivalently a ψ(x, y, 0) = x − .2(1 − cos(2πy)).
Experiment (a) corresponds to the numerical solution of a Dn−κ relation given
by Dn = 1− .05κ. While experiment (b) corresponds to the numerical solution
of the Ḋn −Dn − κ relation, given by Ḋn = −.025(Dn − 1) − .5κ. In addition,
for experiment (b) we assume that the initial velocity distribution is given by
Dn(x, y, 0) = 1. Both relations admit Dn = 1 as the steady, plane, solution.

The results of the numerical experiment are shown in Fig. 5. The lines are
contours of the crossing table tcross(x, y) (i.e. location of waves at time intervals
of 0.2), while the grey scale indicates the value of the detonation normal velocity
as the wave crosses a node point. Experiment (a) shows how the initial cosine
wave smoothly evolves into a flat CJ wave, as expected for a Dn−κ relation. In
contrast, experiment (b) starts out with smooth data, but in a short time the
level-set function (and hence the wave shape) forms cusps and Dn itself becomes
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discontinuous. As the wave evolves further, these discontinuities reflect off the
walls and exhibit the characteristic cell-like pattern, often found in detonation
smoke foil records. Amazingly enough, even the qualitative shape of the traces
of the triple points on the smoke foil record, at the junction of the intersecting
shock waves is reproduced. The dynamics of the motions of the cusps are gov-
erned by the nonlinear hyperbolic PDE that corresponds to the Ḋn − Dn − κ
relation of experiment (b). While experiment (b) does not exhibit self-sustained
cells (by construction the dynamics of the evolution are dissipative), the neces-
sary ingredients to construct a theory of detonation cells based on an intrinsic
evolution equation, are now available.

Fig. 5. An example of the comparison between the Dn−κ relation and Ḋn−κ relation
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