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Abstract

Comparisons between direct numerical simulation (DNS) of deto-
nation and detonation shock dynamics (DSD) is made. The theory of
DSD defines the motion of the detonation shock in terms of intrinsic
geometry of the shock surface, in particular for condensed phase ex-
plosives the shock normal velocity, Dn, the normal acceleration, Ḋn,
and the total curvature, κ. In particular, the properties of three in-
trinsic front evolution laws are studied and compared. These are 1)
Constant speed detonation (Huygens’ construction), 2) Curvature de-
pendent speed propagation (Dn − κ relation), and 3) Curvature and
speed dependent acceleration (Ḋn −Dn − κ relation). We show that
it is possible to measure shock dynamics directly from simulation of
the reactive Euler equations and that subsequent numerical solution
of the intrinsic partial differential equation for the shock motion (e.g.
a Ḋn −Dn − κ relation) reproduces the computed shock motion with
high precision.
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1 Introduction

For nearly a century, the steady, one-dimensional Chapman–Jouget velocity,
DCJ [1], [2] has been used as a coarse prediction of experimental observations.
For nearly as long, engineers have used the steady, one-dimensional results to
predict the motion of unsteady, multi-dimensional detonation shock fronts.
The rule that a detonation front propagates at a constant speed in a direction
normal to itself is equivalent to a Huygens’ construction. Although this model
for detonation front motion is simple, it does not predict many aspects of
multi-dimensional detonation flows. For example, detonation velocities have
been observed to change by as much as 40% due to multi-dimensional effects
[3]. Failure of detonation waves has also been observed experimentally. Other
dynamics, such as pulsating and cellular detonations, can not be predicted
by such a simple propagation rule.

Detonation shock dynamics (DSD) [4] [13] [14] [12] is an asymptotic the-
ory whose key result is an intrinsic partial differential equation (PDE) for
the dynamics of the detonation shock front. The theory of DSD defines the
motion of the detonation shock in terms of the intrinsic geometry of the
shock surface, in particular for condensed phase explosives the shock normal
velocity, Dn, the normal acceleration, Ḋn, and the total curvature, κ [12].
The engineering method of DSD does not solve the reactive Euler equations,
but rather it solves the intrinsic PDE, subject to appropriate boundary and
initial conditions, associated with a particular explosive system. See [6] for a
discussion of appropriate angle boundary conditions for DSD. The solution
can be coupled with equation of state information to calculate shock pressures
and other pertinent information. Thus it is critical to determine the intrinsic
PDE whose solution can reproduce the motion of the detonation shock. It
will be demonstrated that DSD front propagation models can predict several
aspects of unsteady multi-dimensional detonations accurately.

Once an appropriate relation for a particular explosive system is deter-
mined, the ability to predict the resulting initial-boundary-value problem for
the evolution of the detonation shock front is needed. The numerical solu-
tion of the resulting intrinsic DSD PDEs can be integrated analytically for
problems with special geometries, such as planar, cylindrical and spherical
problems. Even then, it is not always possible to get a solution in closed
form. Typical engineering applications involve very complicated boundaries,
and the front can experience such topological changes as merging and burn-
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ing out. Thus, the focus of this paper will be the numerical solutions of
these intrinsic DSD PDEs subject boundary and initial data and verification
of DSD models by comparison with direct numerical simulation (DNS) of
multi-dimensional unsteady detonation problems. We will focus on two DSD
relations, a Dn − κ relation and a Ḋn −Dn − κ relation.

2 Reactive Euler equations and direct numer-

ical simulation

Here, comparisons between DSD and direct numerical simulations of deto-
nation are made. The simulations were carried out with a code described
in [10]. The code is based on a high-order Godunov-type shock-capturing
scheme. Of particular interest is the dynamics of the detonation front. In
Section 2.1, the mathematical formulation of the detonation model used in
the DNS is presented.

Since DSD is an asymptotic theory, one would like to establish how well
it predicts shock front evolution. One way of accomplishing this goal is to
compare a DSD solution to a high resolution solution of a multi-dimensional
detonation problem via a resolved numerical simulation of the reactive, com-
pressible Euler equations.

An algorithm for solving the compressible reactive Euler equations is
outlined. Then, comparisons of the dynamics of the shock front from DSD
models to the resolved DNS are made.

2.1 Reactive Euler equations

The reactive Euler equations express conservation of mass, momentum, and
energy and include a reaction rate law as follows:

Dρ

Dt
+ ρ~∇ · ~u = 0 ,

ρ
D~u

Dt
+ ~∇p = 0 ,

De

Dt
+ p

D(1/ρ)

Dt
= 0 ,

Dλ

Dt
= r(p, ρ, λ) , (1)

For purpose of illustration, the polytropic equation of state (EOS) is used,

e =
p

ρ(γ − 1)
−Qλ ,
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where Q is the heat of detonation, λ is the reaction progress variable (λ = 0
for unreacted material, and λ = 1 for completely reacted material). The
reaction rate is r.

Written in conservative form, in 2-D Cartesian coordinates, these become:

(ρ)t + (ρu)x + (ρv)y = 0 ,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0 ,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0 ,

(E)t + (uE + up)x + (vE + vp)y = 0 ,

(ρλ)t + (ρuλ)x + (ρvλ)y = ρr(p, ρ, λ) (2)

where
E = ρe+

ρ

2
(u2 + v2)

is the total energy. Next, a numerical method will be presented that is used
to solve the above conservation equations.

2.2 Numerical methods for simulation of the reactive
Euler equations

The algorithm for numerically solving the reactive Euler equations is based on
Shu and Osher’s semi-discrete (method of lines) scheme [8], with Jiang and
Shu’s weighted essentially non-oscillatory (WENO) interpolation [9]. The
details of this method, along with boundary treatment can also be found in
[10]. The purpose for picking this algorithm is two-fold. First, by formulating
the problem in a semi-discrete manner, spatial and temporal discretization
are accomplished independent of one another. This makes the code easy to
write for multi-dimensional forced problems. The second reason is that by
using high-order spatial and temporal discretization, very accurate solutions
are obtainable (formally at least in continuous regions of the flow).

2.3 Numerical solutions to 2-D unsteady detonations

The polytropic EOS can be used as a model of condensed phase explosive
provided appropriate values of the EOS parameters are chosen. Also, a rate
law that reflects representative detonation time scales and reaction lengths
must be given. For the studies in this paper, we take

r = H(p− 1GPa)2.5147µs−1(1− λ)
1
2 ,
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as the rate law (H is the Heaviside function). We also use Q = 4 mm2/µs2,
γ = 3 and upstream conditions po = 10−4 GPa, ρo = 2 gm/cc and ~u =
0. These parameters give DCJ = 8 mm/µs, and a steady-state 1-D half-
reaction-zone length of 1mm (with a complete reaction-zone length of roughly
4mm.) Each of the following cases were computed with 10 points in the half
reaction zone (or 40 points in the complete reaction zone.) Each was also
given the same initial conditions, a (numerically) steady CJ detonation trav-
eling to the right with the shock initially located at x = 8 mm. The numerical
steady traveling wave was computed by placing the exact ZND solution on
the grid and allowing it to come to steady state numerically. All shock cap-
turing schemes have some transient initial start-up errors associated with the
smearing of the initial shock profile. Using the numerical initial condition
was done for the purposes of measuring intrinsic quantities, described later
in Section 3.

2.3.1 Expanding channel

The first example examines an initially planar detonation diffraction around
a rigid 90◦ corner. One expects that the detonation front will decelerate as
a rarefaction wave is sent through the reaction zone. Figure 1 shows the
solution at 6µs as a Schlieren-like plot (i.e. a gray-scale plot of |~∇ρ|). (At
time t = 0, the planar detonation shock is located at x = 8mm, in the lower
(y < 35mm) channel). Figure 1 shows the contact discontinuity (above the
vortex at the corner) associated with a change in the temperature of the
shocked material near the corner. This also corresponds to a lower shock
pressure, and thus to a detonation front traveling below the CJ speed. Also,
notice that it takes a finite time for the shock front (near the bottom wall)
to sense the effects of the rarefaction wave. This is clearly shown in the
Schlieren plot.

2.3.2 Converging channel

This second example focuses on the converging dynamics of detonation. Here,
a planar-CJ detonation encounters a rigid 20◦ ramp. The detonation shock
initially forms a Mach reflection which slowly changes to a weaker compres-
sive wave. Now, the front speed is increased above the CJ value in the
Mach-stem area. Figure 2 shows the Schlieren gray-scale image at 7µs (At
time t = 0, the planar detonation shock is located at x = 8mm, in the chan-
nel). The reflected shock wave can be seen clearly, but note that the Mach
stem is curved as was observed in [15].
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Figure 1: Schlieren-like gray-scale plot of |~∇ρ| − [gm/mm4] at 6µs, as com-
puted by the fifth-order WENO scheme.

Figure 2: Schlieren-like gray-scale plot of |~∇ρ| − [gm/mm4] at 7µs, as com-
puted by the fifth-order WENO scheme.
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Figure 3: Schlieren-like gray-scale plot of |~∇ρ| − [gm/mm4] at 5µs, as com-
puted by the fifth-order WENO scheme.

2.3.3 Circular arc

The final example combines both converging and diverging aspects of deto-
nation propagation. An initially planar detonation in a channel encounters
a circular bend. The bend has an inner radius of 20mm and an outer radius
of 50mm. See Figure 3. A rarefaction wave is initially generated at the inner
bend, while a compressive wave is generated from the outer bend. These
each influence the shape of the propagating detonation front. At about 3µs
after the detonation front encounters the bend, the compressive wave and
rarefaction wave collide; eventually the front becomes kinked and forms a
Mach reflection as shown in Figure 3.

3 Measuring intrinsic properties of the deto-

nation shock front

One way of comparing DSD with a DNS is to simply look at the motion of
the shock fronts generated by both solutions. This will be the approach in
this work. Another method would be to suppose there exists an intrinsic re-
lation that governs a detonation shock front, and try to measure this relation
directly from a DNS.

As stated previously, one can directly measure the dynamics of the det-
onation front by solving the compressible, reactive Euler equations with a
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DNS. Unfortunately, intrinsic shock-front information like the detonation
shock speed, curvature of the shock front, etc. are not directly available from
a DNS. But, since the fluid under goes a very strong shock (the Mach num-
ber of the shock is about 650), for this detonation model, the density jump
at the shock is roughly a constant. So the detonation front may be approx-
imated as the locus of positions of the first occurence of an intermediate
density (3gm/cc was used in these computations), between the undisturbed
density (2gm/cc) and the shocked density (4gm/cc). And for problems with
quiescent upstream conditions, the detonation shock front will pass a fixed
Eulerian point at most only once.

Thus, it is possible to create a DNS burn table by sweeping over the com-
putational grid and searching for grid points where the quantity (ρ−3gm/cc)
changes sign from one time level to the next. The first such occurrence will
be when the shock passes over that fixed Eulerian point. Then, linear in-
terpolation in time is used to get an accurate estimate of the burn time,
tDNS
b (x, y). Once we have this DNS burn table, important quantities such as

shock speed, curvature, etc. may be found. For example, the shock speed is
given by Dn = 1/|~∇tb|. The front locations are given simply as contours of
tDNS
b (x, y). The contours of the DNS burn times and instantaneous detona-

tion velocities for the three previous examples are shown in Section 5. Next,
we discuss the various functional forms of the intrinsic PDE’s.

4 Intrinsic partial differential equations from

detonation shock dynamics

4.1 Huygens’ Construction

The Huygens’ construction assumes the detonation normal velocity is equal
to the Chapman-Jouget velocity, i.e. Dn = DCJ = 8mm/µs, for our example.
Numerically, this is solved using the level set algorithm presented in [5] and
[6]. In particular, the level set of a field function, ψ, is used to describe the
motion of the detonation shock, and the evolution of ψ is given by the level
set equation

∂ψ

∂t
+DCJ |~∇ψ| = 0. (3)

Second order essentially non-oscillatory (ENO) interpolation is used in cal-
culating spatial derivatives appearing in (3). A forward Euler method is used
for the time integration. The boundary conditions at a rigid wall are fairly
simple for this model. If the shock wave normal at the boundary points into
the inert region, nothing is done. If the shock wave normal at the boundary
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points into the explosive region, then it is set be perpendicular to the rigid
wall/explosive interface.

4.2 Dn − κ relation

A Dn − κ relation gives parabolic front evolution, see [7]. Disturbances to
the shock front diffuse across the front via parabolic evolution. For this ideal
model, the first term of an asymptotic DSD theory [4] gives a linear Dn(κ)
relation Dn = 8mm/µs− 66.8mm2/µs κ. For comparison to previous results
in [6], we use a Dn(κ) shown in Figure 4, which corresponds to making a
nozzle approximation to the flow, which is assumed to be quasi-steady. Since
the Dn − κ curve is generated numerically, a polynomial fit is used in these
computations. For κ < 0, the Dn − κ relation used is a linear extrapolation
from κ > 0, which gives Dn = 8mm/µs − 66.8mm2/µs κ. The motion
of the detonation shock is solved numerically with the level set algorithm
presented in [5] and [6]. For this type of intrinsic relation, the following level
set equation is solved,

∂ψ

∂t
+Dn(κ)|~∇ψ| = 0, (4)

where Dn(κ) is shown in Figure 4. The discretization is the same as in
section 4.1, with the curvature being approximated with second order central
differences. For this model, an angle boundary condition is appropriate [6].
For all cases in section 5, it is appropriate to enforce that the shock normal
be perpendicular to the rigid wall/explosive interface.

4.3 Ḋn −Dn − κ relation

Unlike the Dn − κ relation, a Ḋn − Dn − κ relation is hyperbolic under
certain conditions, see the discussion in [7]. In particular, disturbances will
propagate at finite speeds along the shock front. The square root of the ratio
of the coefficients multiplying κ and Ḋn determines this transverse signaling
speed, see [7].

Disturbances travel at finite speeds along the shock front for the full re-
active Euler equations. An infinitesimal disturbance travels outward along
the wavefront at a speed equal to the local sound speed plus it will be
advected with the local particle speed. A simple analysis of inert strong
shock states (for ideal EOS) shows that a disturbance will travel at a speed
[(γ − 1)/(γ + 1)]1/2Dn along the shock, see pg. 249 of [11]. A more detailed
analysis including the reaction zone effects has been carried out to see how
the transverse signaling speed is changed by a reaction zone structure. For a
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Figure 4: Dn(κ) law for ideal equation of state model.

detonation wave, a signal will travel transverse to the shock at a speed equal
to the maximum value of (c2− u2)1/2 within the reaction zone (here, c is the
local sound speed, and u is the local particle speed relative to the shock).
For γ > 2, this value is maximum at the shock, and thus disturbances will
travel at a speed equal to the inert case, [(γ − 1)/(γ + 1)]1/2Dn. For γ < 2,
there is an interior point in the reaction zone which has a maximum value
of (c2 − u2)1/2. In this case, the disturbance will travel faster than the inert
shock case. For γ = 3, the transverse propagation speed of a disturbance
will travel at Dn/2

1/2.
The theory of Yao and Stewart [12] derives a Ḋn−Dn−κ relation which

can not be written as Ḋn(Dn, κ), since Ḋn is not defined for certain regions
of (Dn, κ) space, and is multi-valued for others [12]. So, instead a functional
form of the Ḋn −Dn − κ relation was chosen as a model to give the steady
Dn(κ) relation of Section 4.2 when Ḋn = 0. The rest of the Ḋn − Dn − κ
function was determined by setting the transverse signaling speed of the
Ḋn − Dn − κ relation to be that of the full reactive Euler equations. This
gives the following Ḋn −Dn − κ relation for γ = 3:

Ḋn(Dn, κ) = −1

2
D2
nκ+ β(Dn) (5)

where

β(Dn) =

{
3.832(ln(8)− ln(Dn))(1 + .145(8−Dn)1/4), if Dn < 8
.007485D2

n(8−Dn), if Dn ≥ 8.

10



Note that this Ḋn −Dn − κ relation was not derived, but rather empirically
determined. We note that Brun et al [16] had used a similar model for
transient detonation waves. A contour plot of the above relation is shown in
Figure 5. Notice that the contour Ḋn = 0 gives essentially the steady Dn−κ
relation of Figure 4. Since the normal acceleration of the front is needed, the
level set PDE will need to be modified to reflect this type of relation. The
equation for the level-set function, ψ, is basically unchanged from (4)

∂ψ

∂t
+Dn|~∇ψ| = 0, (6)

except that the velocity, Dn, is now a variable and the total derivative of Dn

is governed by

D(Dn)

Dt
=
∂Dn

∂t
+Dnn̂ ·

⇀

∇Dn = Ḋn(Dn, κ), (7)

where n̂ is the shock front normal, n̂ = ~∇ψ/|~∇ψ|, D(Dn)
Dt

is the total derivative

of Dn, and Ḋn(Dn, κ) is given from equation (5) for this model. These
equations form a coupled set of nonlinear PDEs for the evolution of the
level-set function and its normal velocity. These equations (6) and (7) along
with equation (5) can be cast in the following conservative form:

(~∇ψ)t + ~∇(Dn|~∇ψ|) = 0 (8)

(Dn)t + ~∇ · (D
2
n
~∇ψ

2|~∇ψ|
) = β(Dn) (9)

These two equations form a nonlinear conservative hyperbolic system. In
particular, we expect jumps in the gradient of the level set function, and
jumps in the detonation velocity at discontinuities. This would give a kink
in the shock locus associated with a jump in the detonation velocity. This
system of equations has not been investigated elsewhere, to the best of our
knowledge. We present the jump conditions associated with the above sys-
tem of equations (8) and (9) in section 4.3.2. But first, it should be noted
that Whitham’s geometrical shock dynamics [11] model for propagating inert
shocks is also a Ḋn − Dn − κ relation. Next, we briefly discuss Whitham’s
equations and how they are solved in [11].

4.3.1 Whitham’s Geometrical Shock Dynamics

Whitham’s geometrical shock dynamics equations [11] may be interpreted as
a Ḋn−Dn−κ relation (here Dn is the Mach number of the shock wave, and
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Figure 5: Ḋn −Dn − κ relation for ideal equation of state model. Contours
correspond to constant values of Ḋn.

Ḋn is the shock acceleration in the normal direction). The relation is given
by

Ḋn = −(D2
n − 1)

λ(Dn)
κ (10)

where

λ(Dn) =

(
1 +

2

γ + 1

1− µ2

µ

)(
1 + 2µ+

1

D2
n

)
and

µ2 =
(γ − 1)D2

n + 2

2γD2
n − (γ − 1)

.

Whitham formulated a PDE for his Ḋn − Dn − κ relation in terms of a
shock arrival time function, α(~x). His formulae are:

Dn =
1

|~∇α|
(11)

~∇ · (Dn

A
~∇α) = 0 (12)

where Dn is the Mach number of the shock wave and A(Dn) is the Mach
number area rule. The shock locus at any particular time is given by the
equation α(~x) = t. Since Whitham’s model is also a system of nonlinear
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Figure 6: Schematic for defining deflection angle, θ, and shock-shock reflec-
tion angle, χ− θ, after Whitham [11].

hyperbolic conservation equations, it too will have the possibility of forming
discontinuities (kinks in the shock locus, associated with jumps in the nor-
mal velocity). We will express our jump conditions in a similar manner. In
particular, for Whitham’s equations, there is a relation (at least for strong
shocks) between the deflection angle, θ, at a kink and the shock-shock re-
flection angle, χ− θ. See figure 6. See pg. 299 of [11] to see a plot of χ− θ
versus θ for Whitham’s geometrical shock dynamics, with γ = 1.4.

4.3.2 Jump conditions for Ḋn −Dn − κ relations

We can recover a Whitham-like formulation by making the following substi-
tutions:

ψ(~x, t)→ α(~x, t)− t (13)

and
Dn(~x, t)→ Dn(~x) (14)

in the equations (8) and (9), which yields:
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~∇(Dn|~∇α|) = 0 (15)

~∇ · (D
2
n
~∇α

2|~∇α|
) = β(Dn) (16)

Note that equation (15) states that Dn|~∇ψ| is a constant, and equation (6)
specifies the constant to be one:

Dn|~∇ψ| = 1,

which yields precisely equation (11). Substituting this into (16), and taking
A(Dn) = 2/D2

n yields equation (12) with the addition of the source-like
function β(Dn) on the right hand side:

~∇ · (Dn
~∇α
A

) = β(Dn). (17)

We can then apply the divergence theorem to equation (17) to obtain
the jump conditions. The source term, β(Dn), plays no role in the jump
conditions, since it is an O(1) quantity, and we can take a small enough
“box” around the discontinuity to eliminate its role. Not surprisingly, the
jump conditions can be expressed in terms of the shock deflection angle, θ,
and the shock-shock spreading angle, χ − θ, defined in figure 6. These are
related as follows:

sin(χ) +
cos2(χ− θ)

cos2(χ)
sin(χ− θ) = 0. (18)

A plot of this relation is shown in figure 7. In particular, when the deflection
angle, θ, is small, we see that χ−θ = tan−1(1/

√
2). This corresponds to a very

weak, acoustic-like, reflected wave. As the deflection angle is increased, the
shock-shock spreading angle decreases. This would physically correspond to a
Mach reflection, and as the deflection angle is increased to 90◦, the spreading
angle tends toward zero. Of coarse for the full Euler equations, there comes
a point when this Mach reflection transits to a regular reflection. This is not
the case for both the model here and Whitham’s geometrical shock dynamics.

Although equation (17) is a perfectly valid PDE, this formulation is typ-
ically more difficult to solve general problems. The level set formulation,
equations (8) and (9), are typically more convenient. One can use standard
shock capturing schemes to discretize the conservative hyperbolic PDEs. Of
concern is whether the extra independent variable (time in this case) will
play a role in the jump conditions. In particular, does the embedding of the
level curves near a discontinuity affect the jump conditions? Clearly there
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Figure 7: Shock-shock reflection angle, χ− θ, versus shock deflection angle,
θ, for the Whitham-like formulation expressed in equation (17).
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Figure 8: Two possible embeddings of the initial wave shape in figure 6.

are an infinite number of different ways to embed a curve with a kink. See
figure 8 for two possible embeddings of the initial wave in figure 6. In both
cases (a) and (b), the location and velocity of the ψ = 0 curve are the same.
The difference is that the other level curves are in different locations. In
particular, the level set function, ψ has a discontinuity locus that is different
for embedding (a) and (b). The discontinuity locus makes an angle φ above
the x-axis. One would hope that this embedding does not play a role in the
solution to the intrinsic PDEs (this is the case for a Huygens’ construction
and the Dn − κ relation, see [6].) Next, we explore the jump conditions of
the level set equations (8) and (9).

Again, one can use the divergence theorem on equations (8) and (9) to
obtain jump conditions. The major difference is that the level set formulation
has one extra independent variable, namely time. The other difference is that
the embedding angle, φ, also plays a role in the integration that results from
the divergence theorem. It is more convenient to define the angle ω between
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the shock-shock trajectory, χ and the embedded angle, φ. This is given by
ω = χ− φ. The resulting jump conditions can be cast in terms of the angles
ω, χ and θ as:

−2 sin(ω)

cos(χ)
(1− cos(χ− θ)

cos(χ)
)−sin(χ−ω)+

cos2(χ− θ)
cos2(χ)

sin(χ−θ−ω) = 0 (19)

It can easily be seen that if the angle ω is zero, then the jump conditions
are the same as equation (18). But, if ω is non-zero, then different jump
conditions can exist. This indicates that a particular level curve will have a
jump condition that can be influenced by the surrounding level curves. This
is clearly not desirable, since the evolution of a particular level curve can
depend on how it is embedded. Figure 9 indicates the range of possible jump
conditions given by equation (19). Notice that the ω = 0 curve is precisely
the curve given in figure 7. Also notice that for θ small, the possible differ-
ences are small. Only at large deflection angles, θ, and large ω does one see
significant differences. Also, one might be able to solve the time-dependent
level set equations to steady state, and thus the ω dependence would not
play a role, and the Whitham-like jump conditions would be recovered.

4.3.3 Numerical formulation for Ḋn −Dn − κ relations

Here, we use the level set formulation, equations (8) and (9), expressed in
two dimensional Cartesian coordinates, namely:

(u)t + (Dn(u2 + v2)1/2)x = 0 ,

(v)t + (Dn(u2 + v2)1/2)y = 0 ,

(Dn)t + (
D2
nu

2(u2 + v2)1/2
)x + (

D2
nv

2(u2 + v2)1/2
)y = β(Dn), (20)

where u = ψx, and v = ψy. These equations are solved numerically using the
Lax-Freidrichs algorithm with third order WENO interpolation described in
[10]. We also integrate the level set equation (6) using u, v and Dn from
equation (20), to evaluate the second term in the level set equation (6). This
is necessary in finding the location of the front and its’ detonation velocity.
As with the Dn − κ relation, the shock normal at the rigid wall is forced to
be perpendicular to the wall. Next, the detonation front dynamics generated
from the DNS are compared with those from the three intrinsic relationships.
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Figure 9: Shock-shock reflection angle, χ− θ, versus shock deflection angle,
θ, for various embedding angles, ω. The gray region denotes all physically
realizable solutions. The dark line indicates the ω = 0 solution.
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5 Examples and comparisons

Here, comparisons between direct numerical simulation of detonation, and
level-set solutions to three intrinsic PDEs are made. The three intrinsic
relations are: the Huygens’ construction, a Dn−κ relation and a Ḋn−Dn−κ
relation. For the Huygens’ solution and the Dn − κ solution, we computed
the solutions with ∆x = 0.2mm. For the Ḋn −Dn − κ simulations, we used
∆x = 0.1mm. The finer grid for the Ḋn−Dn−κ relation was used since its’
solution is very close to the DNS (this eliminated small errors in mapping
from the DSD grid to the DNS grid.) A self-convergence study was performed
on the numerical solutions to the DSD intrinsic relations and to the DNS.
The study indicates that shock arrival solutions presented here are in error
at most ±0.05µs (usually much less).

5.1 Expanding channel

The measuring technique described in Section 3 is used to calculate the front
locations and Eulerian records of the detonation velocity, Dn, from the DNS
for the expanding channel problem. These records are displayed in Figure
10. The detonation velocity is clearly seen to decrease by roughly 50% from
the DCJ value of 8mm/µs. Also, notice that the signaling speed is clearly
evident in the simulation, and matches the correct speed given from acoustic
theory [11].

The Huygens’ solution is given in Figure 11. The dashed lines represent
the fronts from the Huygens’ solution, while the DNS fronts from Figure 10
are given as solid lines for comparison. Notice that there is a large discrepancy
in the shapes and velocities of the fronts.

The Dn− κ solution is given in Figure 12. The detonation front slows as
the front goes around the corner. Also, since the underlying PDE is parabolic,
the entire front instantaneously senses disturbances at the front, as seen by
the gray-scale plot of the normal velocity. Although this is not physically
correct, the dynamics of a Dn − κ do predict velocity deficits, which were
seen in the DNS.

The Ḋn −Dn − κ solution is given in Figure 13. Notice that the distur-
bances propagate at a finite speed from the corner, as predicted in Section
4.3. Notice also that for this problem the shapes and resulting detonation
velocities compare well with the DNS.
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Figure 10: Fronts at intervals of 1µs are shown as solid lines, and the deto-
nation normal velocities [mm/µs] calculated from the DNS are given as the
gray scale.

Figure 11: Fronts at intervals of 1µs are shown as solid lines from the DNS,
and as dotted lines from the Huygens’ solution.
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Figure 12: The top figure shows the fronts at intervals of 1µs, and detonation
velocities [mm/µs] as calculated from the level-set Dn − κ solution. Fronts
are shown as solid lines from the DNS, and as dotted lines from the Dn − κ
solution in the bottom figure.

21



Figure 13: The top figure shows the fronts at intervals of 1µs, and detonation
velocities [mm/µs] as calculated from the level-set Ḋn − Dn − κ solution.
Fronts are shown as solid lines from the DNS, and as dotted lines from the
Ḋn −Dn − κ solution in the bottom figure.
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5.2 Converging channel

The measuring technique described in Section 3 is again used to calculate
the front locations and Eulerian records of the detonation velocity, Dn, from
the DNS for the converging channel problem. These records are displayed
in Figure 14. The detonation velocity is clearly seen to increase to about
9.5mm/µs from the CJ value of 8mm/µs. Also, notice that the disturbance
from the wedge travels at a finite speed into the steady one-dimensional
detonation region.

The Huygens’ solution is given in Figure 15. The dashed lines represent
the fronts from the Huygens’ solution, while the DNS fronts from Figure 14
are given as solid lines for comparison. Notice that the Huygens’ solution is
just a flat wave solution, and no shape changes are predicted.

The Dn−κ solution is given in Figure 16. The detonation front increases
in speed as the front changes angle at the upper boundary to satisfy the
reflection boundary condition. Since the underlying PDE is parabolic, the
entire front instantaneously senses disturbances at the front, as seen by the
gray-scale plot of the normal velocity. Again, this is not physically correct,
but the Dn − κ solution does predict a velocity increase.

The Ḋn −Dn − κ solution is given in Figure 17. Notice that the distur-
bances propagate at a finite speed from the ramp. Also notice that there
is initially a kink in the wave front, associated with a shock–shock-like re-
flection from the ramp. This solution, unlike Whitham’s Geometrical Shock
Dynamics model for inerts, is not self-similar. The detonation velocity is
actually decreasing along the ramp wall as a function of time. This is due to
the β(Dn) forcing term in the Ḋn−Dn−κ relation. Notice also that for this
problem the shapes and resulting detonation velocities compare well with the
DNS. Even though the acoustic transverse propagation speed is exactly the
same as for the full compressible Euler equations, the triple point tracks are
slightly different. This is due to the fact that the jump conditions for the
intrinsic PDE are different than the Euler equations. For this problem, it
is interesting to note how the embedding angle changes the jump condition
from that of a Whitham formulation. For this case the embedding angle, φ,
is 20◦. The deflection angle, θ is also 20◦. From the jump conditions, we
have ω = 25.16◦ and χ − θ = 25.16◦. This is very close to θ and χ as the
Whitham formulation would be (ω = 0), with θ = 20◦, and χ − θ = 25.48◦.
The relative difference in shock-shock deflection angle is only about 1%.
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Figure 14: Fronts at intervals of 1µs are shown as solid lines, and the deto-
nation normal velocities [mm/µs] calculated from the DNS are given as the
gray scale.

Figure 15: Fronts at intervals of 1µs are shown as solid lines from the DNS,
and as dotted lines from the Huygens’ solution.
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Figure 16: The top figure shows the fronts at intervals of 1µs, and detonation
velocities [mm/µs] as calculated from the level-set Dn − κ solution. Fronts
are shown as solid lines from the DNS, and as dotted lines from the Dn − κ
solution in the bottom figure.
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Figure 17: The top figure shows the fronts at intervals of 1µs, and detonation
velocities [mm/µs] as calculated from the level-set Ḋn − Dn − κ solution.
Fronts are shown as solid lines from the DNS, and as dotted lines from the
Ḋn −Dn − κ solution in the bottom figure.
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5.3 Circular arc

Again the measuring technique described in Section 3 is used to calculate the
front locations and Eulerian records of the detonation velocity, Dn, from the
DNS for the circular arc problem. These records are displayed in Figure 18.
The detonation velocity is clearly seen to increase along the outer bend, where
the detonation senses a compressive wave, and is far below DCJ along the
inner bend, where there is a rarefaction wave, and the detonation diverges.
Also, notice that the disturbance from the edges can be seen to travel at a
finite speed into the steady one-dimensional detonation region.

The Huygens’ solution is given in Figure 19. The dashed lines represent
the fronts from the Huygens’ solution, while the DNS fronts from Figure 18
are given as solid lines for comparison. Notice that the Huygens’ solution
predicts a flat wave along the top of the circular arc, and diffracts around
the inner radius of the arc without any decrease in speed. Notice that the
general shapes and locations are quite different than the DNS.

The Dn−κ solution is given in Figure 20. The detonation front increases
in speed along the upper boundary to satisfy the reflection boundary condi-
tion, and decreases along the inner radius. Also, the fronts become steady
in a frame rotating with the arc very quickly, again this can be attributed
to parabolic nature of the Dn − κ relation. Although this relation does not
predict the shapes very well, the fronts seem to be on average in roughly the
right locations.

The Ḋn − Dn − κ solution is given in Figure 21. Notice that the dis-
turbances propagate at a finite speed from the inner and outer bends. Also
notice that there is a kink that eventually forms, when the compressive wave
from the outer radius breaks and forms a shock–shock interaction. Notice
also that for this problem the shapes and resulting detonation velocities com-
pare well with the DNS.

Notice also that these three problems are very difficult tests, since the
velocities vary far from DCJ , and the curvatures, and time dependence are
relatively large.

6 Conclusions

From the examples given here, it seems clear that a Ḋn − Dn − κ relation
does an excellent job of reproducing the front evolution of a resolved DNS. It
alleviates some of the short comings of a Dn−κ relation. In particular, since
a Ḋn−Dn−κ relation is hyperbolic, and signaling speeds can be made finite
and are similar to the full reactive Euler equations, the range of influence of
disturbances are predicted better than a Dn − κ relation.
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Figure 18: Fronts at intervals of 1 µs are shown as solid lines, and the
detonation normal velocities [mm/µs] calculated from the DNS are given as
the gray scale.

Figure 19: Fronts at intervals of 1 µs are shown as solid lines from the DNS,
and as dotted lines from the Huygens’ solution.
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Figure 20: The top figure shows the fronts at intervals of 1 µs, and detonation
velocities [mm/µs] as calculated from the level-set Dn − κ solution. Fronts
are shown as solid lines from the DNS, and as dotted lines from the Dn − κ
solution in the bottom figure.
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Figure 21: The top figure shows the fronts at intervals of 1 µs, and detonation
velocities [mm/µs] as calculated from the level-set Ḋn − Dn − κ solution.
Fronts are shown as solid lines from the DNS, and as dotted lines from the
Ḋn −Dn − κ solution in the bottom figure.
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