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Abstract. A multidimensional implementation of DSD, formulated with the level set method, is 
applied to track the propagation of a detonation wave in a heterogeneous explosive consisting of an 
array of inert cylindrical obstacles with a liquid explosive in the interstitial space. With the Huygens 
assumption, the average detonation velocity through the explosive is less than that for the liquid 
explosive alone, due to the increased path length. When the normal detonation velocity is assumed to 
depend on front curvature, there is an additional, smaller reduction in the detonation velocity, which 
depends on the cylinder material. The detonation velocity deficits obtained in the computations are of 
the same order as those observed experimentally for a heterogeneous explosive consisting of a packed 
bed of spherical inert beads saturated with sensitized nitromethane. The DSD computations are 
relevant to the experimental results in the large-bead limit in which the pore dimension is large enough 
to support the propagation of discrete detonation wavelets in the interstitial liquid between the beads. 

INTRODUCTION 

When inert particles are added to a liquid 
explosive such as nitromethane (NM), the 
detonation velocity and pressure are reduced since a 
portion of the chemical energy released goes to 
heating and accelerating the inert material. Adding 
a small number of inert heterogeneities such as 
solid particles (1) or microballoons (2) to NM also 
leads to a large increase in the sensitivity of NM. 
This sensitizing effect is due to the generation of 
hot-spots as a result of the interaction of the shock 
wave with the heterogeneities. For a heterogeneous 
explosive consisting of NM with a large volume 
fraction of inert material, evidence exists that hot- 
spot generation due to shock diffraction and 
collisions also plays a role (3). 

Lee et al. (4) found that for a packed bed of 
inert monodisperse spherical beads saturated with 
sensitized NM, two distinct propagation 
mechanisms can occur, depending on the bead 

diameter. The heterogeneous explosive is most 
insensitive (i.e., the failure diameter reaches a 
maximum) when the bead diameter is a critical 
value, which is on the order of the failure diameter 
for the pure liquid explosive. For bead diameters 
less than the critical value, the detonation fails to 
propagate around the beads, but instead the shock 
propagation through the beads is sufficient to 
initiate the explosion of the liquid in the interstitial 
pores. In this “small-bead” regime, as the bead size 
decreases, the density of artificial hot-spots 
associated with the beads increases and the failure 
diameter decreases. A different behavior is observed 
if the bead diameter is larger than the critical value. 
In this case, the global detonation propagation is 
controlled by the propagation of local detonation 
wavelets in the pores between the beads. In this 
“large-bead” regime, as the bead size increases, 
diffraction effects become less severe and hence the 
failure diameter of the mixture decreases (4). When 
the bead diameter is near the critical value, shock 
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propagation through the beads and propagation of a 
reactive front in the interstitial liquid both play a 
role in the overall propagation mechanism. In this 
case, highly resolved hydrocode calculations, with a 
realistic model for the NM reaction rate, are 
necessary to resolve the propagation mechanism. 
However, in the limits of very small and very large 
beads, simpler analytical approaches can be 
considered. In the small-bead regime, as the bead 
size approaches zero, the beads will be in 
mechanical and thermal equilibrium with the 
combustion products within the reaction zone. 
Hence the inert beads will act as a diluent and 
equilibrium Hugoniot calculations are expected to 
give a reasonable prediction of the resulting 
detonation velocity and pressure. In the large-bead 
regime, discrete detonation wavelets will propagate 
around the beads. If the radius of curvature of the 
detonation front is large compared with the 
characteristic reaction zone thickness of the wave, 
then detonation shock dynamics (DSD) theory can 
be used to track the propagation of the detonation 
front through the heterogeneous explosive. 

In the present paper the experimental results for 
the detonation velocity of the heterogeneous 
explosive are first presented. The detonation 
propagation in the limits of small and large beads 
are then explored with equilibrium Hugoniot and 
DSD calculations, respectively. The simplest form 
of DSD theory is used, in which the normal 
detonation shock velocity, D,, is a function of the 
local total shock curvature, 1~. A multidimensional 
implementation of DSD, formulated with the level 
set method (5), is used to track the propagation of 
the detonation front through a regular array of inert 
obstacles. The effects of geometry, D&Q relation, 
and bead material on the average propagation 
velocity are determined. 

RESULTS AND DISCUSSION 

Experimental Results 

In general, the average propagation velocity of a 
detonation wave through a packed bed of spherical 
particles saturated with liquid explosive is less than 
the detonation velocity of the liquid explosive 
itself. Lee (3) observed detonation velocities 
(extrapolated to infinite charge diameter) in the 
range of 4.2-4.6 km/s for glass beads ranging in 
size from 66 pm to 2.4 mm saturated with NM 

sensitized with 15% DETA, as compared with a 
detonation velocity of about 5.8 km/s for the liquid, 
as computed with the equilibrium code CHEETAH 
(6). For glass beads with a mean diameter of 2.4 
mm, which corresponds to the large-bead regime, 
Lee (3) estimated the infinite charge diameter 
detonation velocity to be about 4.5 km/s (i.e., 
D/DC, = 0.78). With metal beads, Lee (3) found 
that the detonation velocity in the large-bead regime 
increased to about 4.8 km/s (i.e., D/DcJ = 0.82). 

The average detonation velocity in the large- 
bead regime is typically larger than that for the 
small-bead regime. However, within each 
propagation regime, the detonation velocity, 
extrapolated to infinite charge diameter, is 
approximately the same, independent of bead 
diameter. This is illustrated in Fig. 1, which 
shows the diameter effect curves for heterogeneous 
charges with beads of various diameters. The 
results shown in Fig. 1 are an extension of earlier 
work in which steel beads were used with the less 
sensitive explosive mixture NM + 10% 
triethylamine (TEA), which has a failure diameter of 
about 2.6 mm with glass confinement as compared 
to about 1 mm for NM + 15% DETA (7). The 
extrapolated detonation velocities in the small- and 
large-bead regimes are, respectively, about 3.9 and 
5.1 km/s, or 68% and 89% of the value of DCJ of 
5.7 km/s calculated with CHEETAH (6) for the 
liquid explosive alone. 

Equilibrium Calculations: Small-Bead Regime 

Also shown in Fig. 1 is the detonation 
velocity calculated using CHEETAH (6) for a 
mixture of iron and NM + 10% TEA. Although 
the EOS formulation is not expected to be accurate 
for an explosive with such a high mass fraction of 
inert material, if we extrapolate the calculated values 
of DcJ, plotted as a function of iron mass fraction, to 
the experimental value (9 l%), we obtain a DcJ of 
about 2.3 km/s, considerably less than the 
experimental value of 3.9 km/s. This is expected 
since the assumption that the beads are in thermal 
and mechanical equilibrium with the combustion 
products at the CJ plane is not valid for the particle 
sizes used in the experiments. To obtain a more 
accurate estimate of the detonation velocity in the 
small-bead regime it is necessary to explicitly 
account for the momentum and energy exchange 
between the beads and combustion products. 
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detonation velocity in the liquid, Davg/DcJ, can be 
determined, and is shown in Fig. 3 as a function of 
the ratio of cylinder radius to spacing r/d. If we 
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consider an array of cylinders with the same solid 
volume fraction as the experiments with beads (i.e., 
60% corresponding to r/d = 0.407), we obtain 
D,,/D~J = 0.933. 
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FIGCJRE 1. Effect of bead size on the diameter effect curve 
for a heterogeneous explosive consisting of a packed bed of 
steel beads (91% steel by mass) saturated with NM + 10% 
TEA. 

DSD Calculations: Large-Bead Regime 

To gain insight into the propagation of the FIGlJRE 2. Shortest path length (dashed line) through a regular 
array of cylinders with radius Y and spacing d. detonation in the large-bead DSD 

the calculations were out track 
propagation of detonation wavelets around an array 
of inert objects. In the experiments with a packed 
bed of spherical beads, although the average solid 
volume fraction is about 60%, the actual packing 
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0.925 1 geom etry of the beads is not known. Given the 
uncertainty in the bead packing, the simpler 
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problem of the propagation of a detonation through 
a regular 2-dimensional array of cylinders was 0.875 I- 

considered. The propagation of a detonation 
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to detonation 
spheres. 

propagation through a regular array of 
r/d 

FIGlJRE 3. Ratio of average detonation velocity through 
regular array of cylinders Davg . to DcJ of liquid as a functron of 
cylinder radius/spacing ratio calculated considering shortest 
path length through cylinders shown in Fig. 2. 

If we make the so-called Huygens assumption, 
in which the detonation velocity in the liquid is 
assumed to be constant, independent of front 
curvature, then the maximum propagation velocity 
through the array will correspond to the shortest 
path length through the array, which can be 
determined analytically. Figure 2 shows a regular 
array of cylinders or radius r with spacing d in 
which the shortest path length through the array is 
shown. By determining this path length from 
geometrical considerations, the ratio of the average 
detonation velocity through the array to the 

Calculations were then carried out with the 
DSD code to track the detonation propagation 
through an array of cylinders with a solid volume 
fraction of 60%. From symmetry considerations, it 
is sufficient to track the propagation through a 
staggered array of half-cylinders. In Fig. 4 the 
detonation fronts are shown at various times during 
the propagation. With the Huygens assumption, 
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FIGlJRE 4. Detonation wavefronts and shortest path (line) through a staggered array of cylindrical obstacles computed with DSD code 
with (a) the Huygens assumption, and (b) using D&C) for NM + 15% DETA with glass cylinders. 

the normalized average detonation velocity through 
the array is found to be D,,,/DcJ = 0.93 1, which 
agrees, within numerical error, with the analytical 
calculation above. 

To investigate the influence of front curvature 
on the propagation, the 2-d calculations were 
repeated, with the assumption that the local normal 
detonation velocity D, was a nonlinear function of 
front curvature, K, as given by equation (5) of Hill 
et al. (8) with the following parameters: DcJ = 
5.8211 mm/ps, IQ = 2.3981 mm-‘, bl = 0.04698, 
b2 = 0.2749 bj I 0.01525 bq = 0.002762 bs = 
0.741, bg = b.6135, and b7 L 0.2398. For K’< 0, a 
linear Dn(Q relation was used, with the same slope 
as that at K = 0. For K > 2.398, then D, = D,(K = 
2.398). A bead diameter of 6 mm was used, which 
corresponds to the large-bead regime for both glass 
and steel beads. A sonic angle (5) of 56” was used 
and critical angles for glass and steel confinement of 
62” and 86”, respectively, were used (9). 

The results of the computations are shown in 
Table 1. With the Huygens assumption, the 
average detonation velocity deficit (relative to DcJ) 
is 7% as a result of the increased geometrical path 
length. When the local front velocity is considered 
to be a function of wavefront curvature, then a 
further velocity deficit of between 3 or 4% is 
introduced, depending on whether steel or glass 

TABLE 1. Average Detonation Velocity for 
Propagation through an Array of Cylinders with a 
Solid Volume Fraction of 60%. 

Model Dav,/Dc~ 

1) Analytical “minimum path length” 0.933 
2) DSD w/Huygens assumption 0.93 l&O.003 
3) DSD w/ D,,(K) for sensitized NM 0.902+0.002 

(15% DETA) w/steel cylinders 
4) DSD w/ D&) for sensitized NM 0.888I!I0.003 

(15% DETA) w/glass cylinders 

cylinders are present. The trends with respect to 
bead material are the same as those observed 
experimentally, i.e., steel beads provide a more 
rigid confinement for the wave and the wave 
propagates at a higher speed past the steel obstacles 
than for glass obstacles. Future calculations will 
consider the propagation through a 3-dimensional 
array of inert spheres to more closely reproduce the 
actual geometry of the experiments. 
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