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1 Introduction

1.1 Background and motivation

A detonation is a combustion-driven shock wave. Typically, a detonation will consist

of an inert shock followed by a region of chemical reaction referred to as the reac-

tion zone. Detonations have a wide variety of engineering applications, from obvious

military uses to explosive welding, hard rock mining, and materials processing. Deto-

nations can occur in a variety of materials, including gases (such as premixed hydrogen

and oxygen), liquids, and solid explosives. Of particular interest in detonation prob-

lems is the motion of the detonation shock. Changes to the reaction zone may cause

large variations in the strength and speed of the detonation front, so it can not be

ignored in modeling detonations. For typical explosives, the reaction zone may be

thousands of times smaller than the engineering scale. This multi-scaled nature of

detonation can pose problems when trying to predict the motion of the detonation

front.

For nearly a century, predictions of steady, unsupported, one-dimensional detona-

tion velocities have been made, and these are in good agreement with experimental

observations. This velocity is known as the Chapman–Jouget velocity, DCJ [1], [2]. 1

For nearly as long, engineers have used the steady, one-dimensional results to predict

the motion of unsteady, multi-dimensional detonation shock fronts. This assumption

is equivalent to a Huygens’ construction for the propagation of the detonation shock

front, i.e. the detonation front propagates at a constant speed in a direction normal

to itself. Although this model for detonation front motion is simple, it does not pre-

dict several aspects of multi-dimensional detonation flows. For example, detonation

velocities have been observed to change by as much as 40% due to multi-dimensional

effects [3]. Failure of detonation waves has also been observed experimentally. Other

1Numbers in square brackets [ ] denote entries in the References, beginning on page 101.
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dynamics, such as pulsating and cellular detonations, will not be predicted by such a

simple propagation rule.

Detonation shock dynamics (DSD) is an asymptotic theory whose key result is an

intrinsic partial differential equation (PDE) for the dynamics of the detonation shock

front. It will be demonstrated that DSD can predict several aspects of unsteady multi-

dimensional detonations accurately. Once an appropriate relation for a particular

explosive system is determined, the ability to predict the resulting initial–boundary-

value problem for the evolution of the detonation shock front is needed. The resulting

PDEs from DSD theory can usually only be integrated analytically for problems

with special geometries, such as planar, cylindrical and spherical problems. Even

then, it is not always possible to get a solution in closed form. Typical engineering

applications involve very complicated boundaries, and the front can experience such

topological changes as merging and burning out. The focus of this work will be the

numerical solutions of these intrinsic DSD equations and verification of DSD theory

by comparison with direct numerical simulation (DNS) of multi-dimensional unsteady

detonation problems. Next, a brief overview of DSD is given.

1.2 Detonation shock dynamics (DSD)

A brief review of the types of intrinsic relations derived from DSD theory is given

here. Details on how these relations are derived are given elsewhere [4], [5]. The

resulting mathematical equation type, linear stability, and dynamics will be given for

each relation in Chapters 2, 3, and 4. A review of DSD model boundary conditions

will also be given in Chapter 2.

Detonation shock dynamics (DSD) is an asymptotic theory that describes the

evolution of a multi-dimensional, curved, near-Chapman–Jouguet (CJ) detonation

shock in terms of an intrinsic evolution equation for the shock surface. A complete
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mathematical model of detonation [6] consists of the compressible Euler equations,

an equation of state with a reaction progress variable, and a reaction-rate law. These

equations admit a one-dimensional (1-D), steady traveling wave solution that corre-

sponds to a detonation with a distributed, finite-width reaction zone. The structure

calculation for this zone consists of a system of ordinary differential equations (ODEs)

that contain a critical point within the zone. These equations, together with the shock

conditions serve to define the normal speed of the detonation, DCJ . The CJ deto-

nation is the detonation whose speed corresponds to a sonic state at the end of the

reaction zone. This steady solution was first calculated by Zeldovich, von Neumann

and Doring, and is thus called the ZND solution.

The shock-evolution equations of DSD theory are derived from an asymptotic

theory in which it is assumed that the curved shock has a large radius of curvature

compared with the characteristic 1-D reaction-zone length, and that the important

dynamic time scale is slow compared with the transit time for particles through the

reaction zone [5], [7]. The intrinsic relation comes from the solution to a nonlinear

eigenvalue problem.

In particular, three such intrinsic relations will be examined. The first is a relation

between the normal detonation velocity, Dn, and the total shock front curvature, κ.

The second is a relation between the time derivative of the normal detonation velocity,

Ḋn, the detonation velocity, Dn, and the total curvature, κ. The third is a relation

between the second normal time derivative of normal detonation velocity, D̈n, the first

time derivative of the normal detonation velocity, Ḋn, the normal detonation velocity,

Dn, the time derivative of the total curvature, κ̇, and the total curvature, κ. These

relations are referred to as the Dn − κ, Ḋn − Dn − κ and the D̈n − Ḋn − Dn − κ̇ − κ

relations, respectively.

The simplest form of the intrinsic surface-evolution equation derived from DSD
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theory is the Dn − κ relation. The shock normal is chosen to point in the direction

of the unreacted explosive and the curvature, κ, is defined to be positive when the

shock is convex. Physically, positive curvature corresponds to a diverging detonation

in which the shock is of convex shape; and Dn is below the plane CJ value, DCJ , for

κ > 0. When the curvature has the opposite sign, κ < 0, the shock has a concave

shape and Dn lies above DCJ . The resulting front dynamics are stable since a Dn −κ

relation is parabolic, as discussed in Chapter 2. The physical justification for modeling

the shock dynamics in such a simple way is as follows.

In the streamwise direction, the reaction zone that supports the detonation resem-

bles the classical ZND structure. Although the reaction zone is not strictly steady

for multi-dimensional detonation, it continues to have the property that the shock is

influenced only by the subsonic region between the sonic curve and the detonation

shock curve. This insulation of the shock from the vast region that follows the reaction

zone leads, in the limit of weak shock curvature (measured relative to the distance

from the shock to the sonic curve), to the result that the normal detonation speed,

Dn, is a function of the shock curvature, κ (under the assumption of sufficiently slow

dynamics).

Although the shock is insulated from the far-field flow in the streamwise direction,

the reaction zone provides a path by which disturbances can propagate in the direction

transverse to the shock-normal direction. In particular, the disturbance generated at

the edge of the explosive, where the high-pressure detonation products expand to low

pressure, propagates through the reaction zone in the transverse direction, leading to

a substantial decrease in the pressure of the reaction zone, even far from the edge.

More than any other influence, these lateral rarefactions from the edge of the explosive

control the speed and hence the shape and location of the detonation shock.

The Ḋn −Dn − κ relation, unlike the Dn − κ relation, is hyperbolic, under appro-
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priate conditions as discussed in Chapter 3. The relation is obtained when the det-

onation velocity varies far from DCJ , and time dependence (i.e. Ḋn) becomes of the

order of the curvature in the asymptotic theory [4]. Since the dynamics are governed

by a hyperbolic PDE, disturbances to the reaction zone propagate laterally at finite

speeds. The same qualitative behavior is also true of the full Euler equations. This

fact will become critical when disturbances (i.e. κ, Ḋn, Dn − DCJ) become large.

The D̈n−Ḋn−Dn− κ̇−κ relation is also hyperbolic under appropriate conditions

discussed in Chapter 4. It is derived in the limit of large activation energy and suffi-

ciently slow dynamics and small curvatures [4]. It may generate very rich dynamics,

including pulsating and cellular dynamics for various parameters in the equation of

state and reaction-rate law. Further discussion of these dynamics is given in

Chapter 4.

1.3 Level-set methods

Once a propagation rule has been determined, designers need the ability to predict the

dynamics of the detonation front. In a typical application, the explosive will detonate

at several different points, and the propagating fronts will evolve independent of one

another, join, and interact with inert confining materials. The evolving detonation

shock front can experience great topological complexity. Standard front-tracking

methods applied to such problems are either very difficult to program, or are limited to

special geometries and initial conditions. New techniques, known as level-set methods

[8], avoid the problem associated with the topological complexity. The key idea is

to represent the front as a contour of a higher-dimensional function. In doing so,

the contour of this level-set function can experience topological changes, while the

function itself remains continuous. Examples will be given below.

Osher and Sethian [8], discussed a novel and powerful imbedding concept that
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has an underlying simplicity for the calculations of front motion. Specifically they

considered the motion of a surface under the influence of a Dn − κ relation. They

pointed out some of the difficulties of attempting a numerical solution of surface

dynamics that uses algorithms based on surface parameterizations. These difficulties

include the corresponding loss of accuracy due to the bunching of nodes in regions

where the front experiences a convergence, which results in a loss of stability of

the method. And in regions of expansion, nodes diverge, and new nodes must be

added to maintain stability. Rezoning is thus an essential feature of such methods.

Furthermore, there is the logical complexity in the programming required to handle

complex and perhaps unforeseen interactions, when sections of shock merge or break

apart.

For a physical simulation that uses an underlying surface-parameterization method,

a separate and independent description of the topology of each disparate segment of

the shock surface must be carried along with all the rules that give the details for

extinguishing old segments and creating new ones. A programmer who deals with the

issues of trying to write reasonably robust code for engineering applications must con-

front a difficult task with these methods. These issues are especially important when

the tracking algorithm is to be used as a subroutine in part of a larger application

code that solves problems with great system complexity.

The level-set methods use instead a formulation where the surface of interest is

imbedded in a field of one higher dimension in the physical space of the application.

The surface of physical interest is found by taking a subset of the field, specifically a

constant value of a field function which defines a level contour in two dimensions or

a level surface in three dimensions. Thus for a 2-D application, the level curves are

imbedded in a 2-D field, and for 3-D applications, the level surfaces are imbedded

in a 3-D field. In particular, one solves for the dynamics of the level curves, ψ =
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constant, where all the level curves obey the intrinsic relation of interest. The level

curves of physical interest for the application are the ones that evolve from the initial

configuration of the physical problem, where the level constant is used to identify

the physically relevant surface, during its evolution. The curve or surface of interest,

ψ = 0, is then the object of a contour search of the full field of ψ(x, y, z, t).

Figure 1 shows a time snapshot of a representative 2-D level surface, ψ(x, y, t),

and its projection onto the x, y-plane. The imbedding relies on the contouring being

uniquely defined, such that a single value of ψ(x, y, t) is obtained for each point (x, y)

at a given instant of time.

While it might seem that additional computation is required to represent a 2-D

surface by a solving for a 3-D field, in fact the gain in logical simplicity leads to

computations that are very efficient and accurate. These advantages easily override

any perceived increase in computational cost.

1.4 Outline

In Chapter 2, the dynamics of a Dn − κ relation are given. In particular, the level-

set equation appropriate for a Dn − κ relation is derived. It will be shown that the

dynamics are given by parabolic evolution, and thus are stable. The numerical algo-

rithm for implementation with arbitrarily complex 2-D boundaries is also presented.

Examples of Dn − κ relations and their solution via level sets will be given in

Chapter 2.

The dynamics of a Ḋn − Dn − κ relation are discussed in Chapter 3. A new

level-set formulation for a Ḋn −Dn − κ relation will be presented. Whitham’s theory

of geometrical shock dynamics (GSD) is shown to be a relation of the Ḋn − Dn − κ

form. Preliminary numerical solutions to the Ḋn −Dn − κ level-set equations will be

given. Examples from GSD will be presented, including a planar shock diffracting
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Figure 1: Schematic of level surface and the projection of level curves in the x, y-
plane at an instant in time. Also shown are the normal and tangent to the level
curve, ψ = 0.
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over a circular cylinder, originally studied by Bryson and Gross [9].

In Chapter 4, the dynamics of a D̈n− Ḋn−Dn− κ̇−κ relation are discussed. The

mathematical type and resulting linear stability analysis are also presented. Different

regions of parameter space are shown to yield a variety of different dynamics, including

1-D pulsations, cellular dynamics and stable hyperbolic dynamics.

Chapter 5 discusses a numerical method for solving the reactive Euler equations,

and presents three direct numerical simulations of detonations. An internal boundary

method which allows for arbitrarily complex 2-D boundaries is presented. Also, com-

parisons between Huygens’ construction, the Dn − κ relation, and the Ḋn − Dn − κ

relation are made for each of the three numerical simulations.

Chapter 6 will give conclusions and present future avenues for research in level-set

methods, detonation physics, and related subjects.
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2 Dynamics of a Dn − κ relation

As mentioned in the introduction, detonation shock dynamics is the name given to

a body of multi-dimensional theory that describes the dynamics of “near-Chapman–

Jouguet” detonations. Its name follows from Whitham’s theory of “geometrical shock

dynamics,” because of the similarity of the mathematical structure of the theories.

The engineering application of DSD was originally set forth in two papers [10], [7].

The simplest result of DSD theory is that under suitable conditions, the detonation

shock in the explosive propagates according to the simple formula

Dn = DCJ − α(κ), (1)

where Dn is the normal velocity of the shock surface, DCJ is the 1-D, steady, Chapman–

Jouguet velocity for the explosive, and α(κ) is a function of curvature κ, that is a

material property of the explosive. Figure 2 illustrates the sign of the curvature for a

typical detonation shock. A sketch of a typical Dn−κ relation for PBX9502 is shown

in Figure 3.

2.1 Level-set formulation

Here the level-set method and its application and utility as a tool for computing the

dynamics of propagating interfaces is explained. The numerical method used to solve

the resulting PDE is also given.

First, notice that a surface (or the shock in DSD) is a subset with a dimension

one lower than the space it travels in. The level-set method with applied boundary

conditions solves for a field function ψ(x, y, z, t) that depends on physical space and

time, and the field identifies surfaces of constant values of ψ. The surface ψ(x, y, z, t)

= 0 is typically identified with the surface of physical interest. Therefore, the compu-

tational task involves computing a field in space–time, and then exhibiting the surface

10
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Figure 2: A snapshot of the x, y-plane, showing a diverging and a converging detona-
tion. For a diverging detonation, the transverse dimension of the region of chemical-
energy release is smaller than the dimension of the region of shock surface that it
supports (the detonation speed falls below DCJ). For a converging detonation the
reverse is true and the detonation speed exceeds DCJ .
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of interest by searching for the special surface ψ = 0. Since a level curve is given by

ψ(x, y, z, t) = constant, it follows that its total derivative is zero, i.e.

∂ψ

∂t
+

∂ψ

∂x

dx

dt
+

∂ψ

∂y

dy

dt
+

∂ψ

∂z

dz

dt
= 0,

where the time derivatives, dx/dt and so on, are the components of the surface velocity

�D, defined by that particular level curve. In coordinate-independent form the above

equation is
∂ψ

∂t
+ �∇ψ · �D(κ) = 0. (2)

The outward surface normal, n̂, is chosen to be positive in the direction of outward

propagation. (In the physical application the detonation shock propagates from the

burnt explosive towards the unburnt explosive and the positive normal points into

the unburnt material.) In terms of the level-set function, the normal is given by

n̂ = �∇ψ/|�∇ψ|. The total curvature satisfies the relation

κ ≡ κ1 + κ2 = �∇ · n̂. (3)

Using �D · n̂ = Dn, and �∇ψ · n̂ = |�∇ψ| in (2), one obtains a Hamilton–Jacobi-like

equation for the level-set function that is mainly used in the following discussions:

∂ψ

∂t
+ Dn(κ)|�∇ψ| = 0. (4)

The curvature κ is simply related to the level-set field by using the definition of

the curvature from (3) and by then carrying out the indicated differentiations. For

example, for two dimensions and for Cartesian coordinates, the curvature is given by

κ =
ψxxψ

2
y − 2ψxyψxψy + ψyyψ

2
x

(ψ2
x + ψ2

y)
3/2

. (5)

In summary, the shock (i.e. the surface of physical interest) is assigned the level

ψ = 0, while the unburnt material has ψ > 0 and the burnt material has ψ < 0. A

13



unique way to specify ψ initially is to choose ψ equal to the signed minimum distance

from the initial shock surface. Equation (4) is then a partial differential equation for

the level-set function ψ, that is to be solved subject to its initial data.

The solution of the PDE with initial and boundary conditions generates the field

ψ(x, y, z, t), and the location of the shock is then simply found by search for the level

surface ψ = 0. This is easily done by creating a table of arrival times of the shock

across the computational grid. This is referred to as the burn table. Numerically

generating a burn table is discussed in Section 2.8

2.2 Mathematical type and stability

A relation between the normal detonation velocity, Dn, and curvature, κ, is a parabolic

evolution equation. This fact is most easily seen as follows. Suppose a linear Dn − κ

relation, Dn = 1 − ακ, is given and further that the level-set function (and thus the

front) may be written as

ψ(x, y, t) = y − ys(x, t) = 0.

Then the normal is given by

n̂ =

⇀

∇ψ

|
⇀

∇ψ|
=

−ys,x

(1 + y2
s,x)

1/2
ı̂ +

1

(1 + y2
s,x)

1/2
̂

and the curvature is

κ =
⇀

∇ · n̂ =
−ys,xx

(1 + y2
s,x)

3/2
.

Substitution of these into (4) and assuming the slope of the front is small yield

ys,t − (1 + αys,xx) = 0

and changing variables ys(x, t) = zs(x, t) + t gives

zs,t − αzs,xx = 0,

14



which is the linear (parabolic) heat equation. Without going through the details, it

is obvious that for α > 0, the above linearized PDE is stable.

2.3 Numerical implementation

2.3.1 Interior differencing

Here a brief description of the numerical method we use for solving the level-set

equation (4) on a fixed Eulerian finite difference grid is given. For the interior algo-

rithm, the algorithm follows Osher and Sethian [8]. The time advance of the level-set

equation
∂ψ

∂t
+ DCJ |�∇ψ| − α(κ)|�∇ψ| = 0 (6)

is split into two steps. First, ψ is advanced using the sub-operator, LP , defined by

the first and third terms in equation (6). This step is then followed by the advance

for the sub-operator, LH , defined by the first and second terms in equation (6). The

motivation for this operator splitting is related to the fact that LH is a hyperbolic

operator and LP is a parabolic operator. Different numerical methods are thus appro-

priate for these different type operators. The differencing for each of the three terms

in (6) is now considered separately.

For the time derivative, first-order, forward Euler differencing

∂ψ

∂t
=

ψn+1
i,j − ψn

i,j

∆t
(7)

is used, where i and j represent the x and y node and n represents the time level in

the usual way. Higher-order Runge–Kutta type schemes can be used and have been

derived in [8] and [12]. It will be shown in Section 2.7 that the forward Euler method

is sufficient to yield second-order convergence.

The first-order spatial derivatives in the second term in (6) are calculated using

a combination of upwinding and essentially nonoscillatory (ENO) interpolation. In
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the following text, first-order interpolation is equivalent to first-order differencing and

second-order interpolation is equivalent to second-order differencing. Consider first a

2-D problem using upwinding and first-order interpolation. An approximation to |�∇ψ|
is needed, and thus ψx and ψy are needed. First, construct four linear interpolants

between node ψn
i,j and the four surrounding nodes, ψn

i+1,j, ψn
i−1,j, ψn

i,j+1, and ψn
i,j−1.

Define the usual forward and backward difference operators

D+
x ψn

i,j =
ψn

i+1,j − ψn
i,j

∆x
, D−

x ψn
i,j =

ψn
i,j − ψn

i−1,j

∆x
,

D+
y ψn

i,j =
ψn

i,j+1 − ψn
i,j

∆y
, D−

y ψn
i,j =

ψn
i,j − ψn

i,j−1

∆y
.

Next combine these differences to define the following first-order upwind difference:

|�∇ψ|ni,j = [ f+
x (D+

x ψn
i,j) + f−

x (D−
x ψn

i,j)

+f+
y (D+

y ψn
i,j) + f−

y (D−
y ψn

i,j)]
1
2 , (8)

where

f+
x (a) =

{
a2, if D+

x ψn
i,j < 0

0, otherwise
f−

x (a) =
{

a2, if D−
x ψn

i,j > 0
0, otherwise

f+
y (a) =

{
a2, if D+

y ψn
i,j < 0

0, otherwise
f−

y (a) =
{

a2, if D−
y ψn

i,j > 0
0, otherwise

To achieve second-order spatial accuracy, four quadratic interpolants, each using three

nodes, are used. For each of the four directions (interpolants between ψn
i,j and ψn

i−1,j,

ψn
i,j and ψn

i+1,j, ψn
i,j and ψn

i,j−1, and ψn
i,j and ψn

i,j+1), there are two choices for the

interpolant. For example, consider the linear interpolant between ψn
i,j and ψn

i+1,j.

To construct a quadratic interpolant, another node, either ψn
i−1,j or ψn

i+2,j, is used.

The choice is made by picking the node which gives the smallest second derivative

in magnitude. If the second derivatives are of opposite sign, then the second-order

correction is taken to be zero. This same procedure is used in the other three directions

resulting in the following second-order scheme:
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|�∇ψ| = [f+
x (D+

x ψn
i,j −

∆x

2
min mod(D−

x D+
x ψn

i,j, D
+
x D+

x ψn
i,j))

+f−
x (D−

x ψn
i,j +

∆x

2
min mod(D−

x D−
x ψn

i,j, D
+
x D−

x ψn
i,j))

+f+
y (D+

y ψn
i,j −

∆y

2
min mod(D−

y D+
y ψn

i,j, D
+
y D+

x ψn
i,j))

+f−
y (D−

y ψn
i,j +

∆y

2
min mod(D−

y D−
y ψn

i,j, D
+
y D−

y ψn
i,j))]

1
2 , (9)

where the min mod function is defined by

min mod(a, b) =




a, if |a| ≤ |b| and ab > 0
b, if |b| < |a| and ab > 0
0, otherwise.

The third term in (6) is essentially a diffusion term, and second-order central differ-

ences are used to calculate κ, and thus α(κ). Central differences are also used to

calculate |�∇ψ| in this term.

The calculations in Sections 2.8 and 5.6 use the above second-order scheme.

2.3.2 Initial conditions

The level-set function, ψ, must be defined initially at t = 0 where ψ(x, y, t = 0) = 0

represents the initial shock locus. One can choose ψ(x, y, t = 0) to be the signed

distance from the initial shock locus, with ψ(x, y, t = 0) positive in the unburnt

material and ψ(x, y, t = 0) negative in the burnt material. Thus the normal, n̂,

points into the unburnt material. For example, two initially expanding cylindrical

shocks with radii equal to r located at (x1, y1) and (x2, y2) would be given by

ψ(x, y, t = 0) = min[
√

(x − x1)2 + (y − y1)2 − r,
√

(x − x2)2 + (y − y2)2 − r],

while two collapsing cylindrical shocks at the same location and radii would be given

by

ψ(x, y, t = 0) = max[r −
√

(x − x1)2 + (y − y1)2, r −
√

(x − x2)2 + (y − y2)2].
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2.4 Boundary conditions

Three types of boundary conditions have been implemented into our level-set formu-

lation. These are symmetric (perfectly reflecting), nonreflecting (inflow/outflow), and

angle (physical) boundary conditions. The formulation uses two levels of ghost nodes

to enforce the particular boundary conditions. The symmetric boundary condition is

trivially satisfied by reflecting the values of ψ from the interior to the exterior. For

example if x = 0 is a symmetry plane and ψn
0,j is at x = 0, then ψn

−1,j = ψn
1,j and

ψn
−2,j = ψn

2,j.

The nonreflecting boundary conditions are applied by using quadratic extrapola-

tion. This condition is equivalent to keeping the second derivative along the normal

to the boundary as a constant. The upwinded first-order spatial derivatives do not

need to have ghost nodes, since they look in the proper direction. However, ghost

nodes are used in the calculation of the second-order derivatives and the curvature

at the boundary. For example, if nonreflecting boundary conditions are applied at

x = 0, then ψn
−1,j = 3ψn

0,j − 3ψn
1,j + ψn

2,j, etc.

2.4.1 Angle boundary conditions

In [13], a set of model DSD boundary conditions were formulated that involve the

angle that the local shock normal, n̂s, makes with the outward-pointing normal vector

of the boundary, n̂b, which is refered to as ω. Equivalently ω is the angle between

the tangent to the edge and the tangent to the shock. See Figure 4. A physical

justification for the DSD angle boundary condition will be given next, followed by a

summary of the model boundary conditions.

The condition to be applied depends on the flow type as witnessed by an observer

riding with the point of intersection of the local shock and the edge. The boundary

conditions are formulated by an analysis of the local singularities admitted by the
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Figure 4: Definition of the angle, ω, and the normals, n̂s and n̂b.

Euler equations [14] and the results are summarized in this section. The flow type is

characterized by the local sonic parameter, S, evaluated at the shock in the detonation

reaction zone and as measured by an observer moving with the point of intersection

of the detonation shock and the material interface

S ≡ C2 − (Un)2 − D2
n cot2(ω) , (10)

where C is the sound speed in the explosive, Un is the explosive particle velocity in

the shock-normal direction and Dn is the detonation normal speed. When S < 0,

the flow is locally supersonic at the edge and no boundary condition is applied. The

application of no boundary condition is, in practice, the application of a continuation

boundary condition, where information flows from the interior to the exterior of the

domain. More will be said about the numerical implementation of the continuation

boundary condition in Section 3.3. When S > 0, the flow is locally subsonic and

the presence of the edge influences the reaction zone. The form of the boundary

condition for the S > 0 case is determined by the properties of the inert material
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Figure 5: DSD boundary conditions. A snapshot of the x, y-plane showing the super-
sonic type of explosive–inert boundary interaction. The magnitude of ω controls the
type of interaction that occurs. This figure corresponds to a supersonic flow in the
explosive, measured relative to an observer riding with the shock–edge intersection
point.

that is adjacent to the explosive.

The problem geometry and the various cases—supersonic, sonic and subsonic—

that are modeled correspond to a steady flow in the reference frame of the shock–edge

intersection point. Figures 5-7 show instantaneous time snapshots of the interac-

tion between the explosive wave and confining inert material. The explosive induces

a shock into the inert material (labeled inert shock), which typically generates a

reflected wave into the explosive (labeled either the reflected shock or the limiting

characteristic depending on whether the reflected wave is a shock or a rarefaction,

respectively).

Figure 5 corresponds to a supersonic flow, S < 0. As previously mentioned, no

boundary condition is applied irrespective of the degree of confinement that the inert
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Figure 6: DSD boundary conditions. A snapshot of the x, y-plane showing the sonic
type of explosive–inert boundary interaction. The magnitude of ω controls the type
of interaction that occurs. This figure corresponds to a sonic flow in the explosive,
measured relative to an observer riding with the shock–edge intersection point.
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Figure 7: DSD boundary conditions. A snapshot of the x, y-plane showing the sub-
sonic type of explosive–inert boundary interaction. The magnitude of ω controls the
type of interaction that occurs. This figure corresponds to a subsonic flow in the
explosive, measured relative to an observer riding with the shock–edge intersection
point.
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provides to the explosive. The shock reflected into the explosive does not influence

the detonation shock. As the angle ω is increased to the value ωs where S = 0, the

flow in the explosive turns sonic and therefore can sense the degree of confinement

that the adjacent inert material provides. Note that ωs is a constant in our model,

given by the explosive equation of state.

Figure 6 shows two cases, labeled as 1 and 2, that correspond to different degrees

of confinement provided by the inert material. For these cases, the pressure decreases

towards the right of the explosive sonic locus. Case 1 corresponds to weak confine-

ment, for which the pressure induced into the inert material is considerably below the

detonation pressure at the edge. The influence of the confinement propagates into the

explosive no farther to the left than the limiting characteristic labeled 1. The subsonic

part of the reaction zone remains totally unaffected by the confinement, and the flow

remains sonic at the shock–edge intersection point. The detonation propagates as if

it were totally unconfined.

As the degree of confinement is increased further, the drop in pressure in going

from the explosive to the inert material becomes less, until at some critical degree

of confinement the influence of the inert material extends up to the limiting charac-

teristic labeled 2. At this critical degree of confinement, the detonation continues to

propagate as if it were unconfined. Any further increase in the confinement destroys

the sonic isolation of the reaction zone from the influence of the confinement and

leads to the case shown in Figure 7.

If for the angle ωs, corresponding to S = 0, the pressure induced into the confining

inert material is greater than the pressure in the explosive, then the flow that develops

is that shown in Figure 7. The reflected wave can now enter into the subsonic part of

the reaction zone. This results in an increase in pressure in the reaction zone and the

concomitant increase of the normal shock velocity, Dn. The angle ω increases until
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the pressure in the inert and reaction zone balance. Since the flow in the explosive

is subsonic, a reflected shock is not generated in the explosive. The value of ω at the

point of pressure equilibrium is ωc. The value of ωc is a constant that depends only

on the specific explosive–inert pair. It is easily calculated from a shock polar analysis,

assuming no reflected wave in the explosive.

In summary, the boundary interaction has the following properties: (i) When the

flow in the explosive is supersonic (i.e., ω < ωs ), continuation (outflow) boundary

condition is applied. This corresponds to extrapolating the front to the exterior,

without changing the angle at the boundary. (ii) When the flow turns sonic ω = ωs,

two cases can arise: (a) The pressure induced in the inert is below that immediately

behind the detonation shock and the confinement has no influence on the detonation.

The sonic boundary condition is applied, ω = ωs. (b) The pressure induced in the

inert is above that immediately behind the detonation shock. The angle ω increases

(i.e., ω > ωs) until the pressure in the inert and explosive are equilibrated. This angle

ω = ωc is the equilibrium value for the angle and is regarded as a material constant

that is a function of the explosive–inert pair. Thus the boundary condition recipe

can be summarized as follows: (1) A continuation boundary condition is applied

for supersonic flows and (2) when the flow becomes either sonic or subsonic, ω is

bounded from above by a critical angle ωc (unique for each explosive–inert pair) that

is determined using the above discussion.

Figure 8 shows a time history of the evolution of the angle ω(t) along the edge of

confinement that corresponds to a typical application. Figure 8(a) shows a detonation

interacting with an edge at three different times, t1, t2, t3. At time t1, the shock–edge

intersection is highly oblique and the supersonic (continuation) boundary condition

applies. At time t2, it is assumed that the intersection angle first becomes sonic,

ω = ωs. If the confinement is heavy enough, a rapid acoustic transient can take
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place and a rapid adjustment to the equilibrium value, ωc, can occur. After that

adjustment, shown at t3 (say), the angle remains at ω = ωc which corresponds to

that for the explosive–confinement pair. The right-hand portion of Figure 8(a) shows

the time history of the shock interaction at the edge. The value of ω(t) is determined

by the solution for ω < ωs. Once ωs is attained, a rapid jump to ωc occurs and from

then on ω = ωc applies. This is shown in the right hand portion of the figure. If the

confinement were sufficiently weak, no jump to ωc would be needed, and the angle

would simply remain at ωs. This case is shown by the broken line.

Figure 8(b) shows a different scenario. It is assumed that the detonation is initially

flat and ω = π/2. For heavy confinement, a rapid acoustic transition to ω = ωc is

assumed to occur and then maintained from then on. If the confinement is sufficiently

light, then the transition is from ω = π/2 to ω = ωs. Again this is shown in the broken

line.

2.4.2 Implementation of angle boundary conditions

Of the three boundary conditions, angle boundary conditions need the most attention.

A class of physical boundary conditions within DSD theory concerns detonation waves

interacting with inert boundaries were described in Section 2.1. For each inert–

explosive pair, two angles are needed to define the boundary conditions at an interface.

These are the sonic angle, ωs, and the steady state angle, ωc.

In general, the location of the inert–explosive interface, where angle boundary

conditions need to be applied, can be quite complex. Unfortunately, it is not always

simple to find a computational grid (body-fitted grid) whose boundaries coincide with

the physical inert–explosive interface. Next an internal boundary method is developed

to treat these boundary conditions numerically for arbitrarily complex interfaces on

a uniform (∆ = ∆x = ∆y) 2-D Cartesian grid. In spirit, this method is similar to

the Cartesian boundary method of Leveque [15] and others [16], [17], although the
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mathematical boundary conditions being applied are quite different. It will be shown

that angle boundary conditions involve spatial derivatives of the level-set function, ψ

(which are similar to Neumann boundary conditions). The mathematical boundary

conditions, and the corresponding numerical implementation, are given next.

First, define a new (nonevolving) level-set function, φ(x, y), such that φ(x, y) = 0

at the inert–explosive interface. The function φ(x, y) is defined at computational

grid points as φi,j (where again i and j correspond to the x-location and y-location,

respectively). Define φ to be the signed distance function from the inert–explosive

interface, with φ negative in the explosive and φ positive in the inert. To enforce

the angle boundary conditions on the interior of the computational domain, an array

of (i, j) nodes near φ = 0 will be used. This array of nodes is referred to as the

internal boundary (IB) nodes. These IB nodes are found in the following manner.

Sweep through the grid, and if at an (i, j) node φi,j > 0 and if at any of the eight

surrounding nodes one of the following conditions is true, φi+1,j ≤ 0, φi−1,j ≤ 0,

φi,j+1 ≤ 0, φi,j−1 ≤ 0, φi+1,j+1 ≤ 0, φi−1,j−1 ≤ 0, φi−1,j+1 ≤ 0 or φi+1,j−1 ≤ 0, then

the (i, j) node is an IB node. This search is analogous to computationally finding

the φ = 0 contour. This search for internal boundary points is done only once at

the beginning of the computation. The angle boundary conditions will be enforced

by specifying ψi,j at these IB nodes. Furthermore, the interior differencing of Section

3.1 needs to be applied only at nodes where φi,j ≤ 0, since the others correspond to

inert regions.

The inert–explosive interface normal, n̂b, at an IB node is given by

n̂b = nbxı̂ + nby ̂ =
�∇φ

|�∇φ|
, (11)

which is approximated by second-order central differences at IB nodes. For each IB

node, a locally rotated orthogonal stencil is defined which is aligned with the inert–

explosive interface normal, n̂b, and inert–explosive interface tangential unit vector,
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Figure 9: Schematic of internal boundary condition stencil. • interpolated stencil
points, � internal boundary node (i,j), ◦ point where boundary condition is to be
applied.

t̂b = nby ı̂ − nbx̂. The coordinates associated with the n̂b and t̂b directions are η and

ξ, respectively. See Figure 9. Since the angle boundary condition will involve spatial

derivatives of the level-set function, ψ, values of ψ at the discrete points, labeled Pk,

associated with each IB node need to be known. These points are given by:

P1 = (φi,j − ∆)n̂b P2 = (φi,j − 2∆)n̂b

P3 = (φi,j − 3∆)n̂b P4 = ∆t̂b P5 = −∆t̂b

Values of ψ at these rotated stencil points, P1, P2, P3, P4, P5, are given by second-

order accurate bilinear interpolation. At every time step, the following algorithm is
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applied:

Step 1: Quadratically extrapolate ψ from the interior to the IB nodes along

the n̂b direction. (Assume a supersonic interaction.)

Step 2: Check if interaction at each IB node is subsonic or supersonic.

Step 3: Apply angle boundary condition to all IB nodes which have a

subsonic interaction.

Quadratic extrapolation is accomplished by solving

ψi,j = 3ψP1 − 3ψP2 + ψP3 (12)

at all IB nodes. In general, ψP1 , ψP2 , ψP3 can be dependent on IB nodes. For example,

in Figure 9, ψP3 will be a linear combination of the three interior values ψi−1,j−1, ψi−1,j,

ψi,j−1 and the IB node value ψi,j. Therefore, (12) will result in a system of linear

equations, where the number of equations and unknowns is equal to the number of

IB nodes. This system is solved by the following iterative method: View (12) as

ψi,j = F1(ψi,j). Start with an initial guess for each ψguess
i,j , say the value of ψi,j at the

old timestep. Evaluate F1(ψ
guess
i,j ), and set

ψnew
i,j = (1 − w)ψguess

i,j + wF1(ψ
guess
i,j ) , (13)

where w < 1 for the iterative method to converge. Repeat (13) until max(|ψnew
i,j −

ψguess
i,j |) < ε∆. The values w = 0.9 and ε = 10−3 work well and typically converge in

ten iterations or less. Note that the number of equations being solved iteratively is

of the order (NxNy)
1/2 where Nx and Ny are the number of x and y grid points, so

the algorithm is relatively inexpensive compared with the interior scheme.

To check if an interaction at an IB node is subsonic or supersonic, an approxima-

tion for the angle, ω, between the shock normal, n̂s, and the inert–explosive interface
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normal, n̂b, is needed. The vector, n̂b, is given from (11) and the normal, n̂s, is given

by

n̂s =
ψη√

ψ2
η + ψ2

ξ

n̂b +
ψξ√

ψ2
η + ψ2

ξ

t̂b

and therefore ω is given by

cos ω = n̂s · n̂b =
ψη√

ψ2
η + ψ2

ξ

. (14)

Approximations to the derivative terms in (14) are needed at the point where the

boundary condition is to be applied; see Figure 9. Taylor series expansions reveal the

following approximation:

ψη =
ψP2 − 4ψP1 + 3ψi,j

2∆
− ψP2 − 2ψP1 + ψi,j

∆2
φi,j , (15)

where φi,j appears in (15) since it is the signed distance from the node (i, j) to the

location where the boundary condition is to be applied. See Figure 9. A central

difference approximation to ψξ is

ψξ =
ψP4 − ψP5

2∆
. (16)

Equation (14), together with (15) and (16), gives an approximation to cosω at the

boundary point corresponding to the IB node. If cosω > cos ωs then the interaction

is supersonic; else the interaction is subsonic.

All IB nodes that have a subsonic interaction must have the angle at the boundary

point set to ω = ωc. Therefore, the following needs to solved:

cos ωc = n̂b · n̂s =
ψη√

ψ2
η + ψ2

ξ

.

Solving for the derivative, ψη, yields

ψη = cos ωc(ψ
2
ξ csc2 ωc)

1/2 . (17)
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Substitution of (15) and (16) into (17), and solving for ψi,j yields

ψi,j =
cos ωc((ψP4 − ψP5)

2 csc2 ωc)
1/2 − ∆2(ψP2 − 4ψP1) + ∆φi,j(2ψP2 − 4ψP1)

3∆2 − 2∆φi,j

. (18)

Now, the values ψP1 , ψP2 , ψP4 , ψP5 appear on the right hand side of (18) in a nonlinear

way. But this system of nonlinear equations can be solved by viewing (18) as ψi,j =

F2(ψi,j), and by applying the same iterative technique as before (but with F1 replaced

by F2).

2.5 Extensions to three dimensions

Extensions of the level-set method described in the previous sections to three dimen-

sions is relatively straightforward. Since each term in the hyperbolic part is treated

separately (i.e. approximations to ψx, ψy and ψz); only an additional term in the

approximation to |�∇ψ| will be needed. The parabolic terms in the level-set formula-

tion in three dimensions can again be calculated using second-order central differences,

just as in two dimensions. Using the signed distance function as initial conditions

works in three dimensions as well. Reflecting boundary conditions are simply applied

in three dimensions. Nonreflecting boundary conditions are also easily applied by

using quadratic extrapolation in the interface normal, n̂b, direction. An example of a

3-D problem is given in Section 2.8. The same methodology of Section 2.6.2 can be

applied in three dimensions to enforce arbitrarily complex boundaries.

2.6 Creating a burn table

For a Dn − κ relation such that Dn is always greater than zero, any initial wave will

cross a node only once. This fact follows from ψt = −Dn(κ)|�∇ψ| ≤ 0, and is hence

monotonically decreasing in time. Thus, instead of saving several ψ(x, y, t) arrays in

time, and taking contours at ψ(x, y, t) = 0, it is more efficient to create a burn table.

A burn table is just a record of wave arrival times as a function of space, tb(x, y).
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Creating a burn table is accomplished numerically by checking each node to see if its

value of ψ changes sign after each timestep. If it has, then the ψ(x, y, t) = 0 contour

has passed the node, and linear interpolation in time is used to record the burn time.

2.7 Numerical stability and accuracy

In this section, the stability restrictions placed on the numerical algorithms described

in Section 2.4 are given. Accuracy of the algorithms is also examined by making

comparisons with an exact solution. Since the numerical algorithms are explicit in

time, certain restrictions on the time step are required to ensure numerical stability.

As one might expect, the hyperbolic operator will have a Courant–Friedrichs–Lewy

(CFL) type restriction, c1∆t/∆x ≤ 1, while the “mostly parabolic” operator will have

a restriction such as c2∆t/∆x2 ≤ 1.

Since (6) is nonlinear, classical methods for determining the stability of difference

equations can not be used. The following approach is taken. First, the time step

restriction for the first-order hyperbolic part of the operator will be obtained; this

consists of (7) and (8), by requiring that the scheme be monotone. Then a time

step restriction for the second-order parabolic part of the operator, consisting of (7)

with central-differenced curvature terms, will be found by a frozen coefficient analysis.

Then, the time step required for a general Dn(κ) will be given.

Here, the time step restriction for the Dn = DCJ case, with first-order accurate

differences (8) and no curvature dependence is given. The resulting PDE is hyperbolic,

and has the property of being monotone. Monotonicity implies the following (see [18]

for details): If two sets of initial data are given (say in two dimensions), ψ1(x, y, t = 0)

and ψ2(x, y, t = 0), such that ψ2(x, y, t = 0) ≥ ψ1(x, y, t = 0) for all x and y, then for

all time and space, ψ2(x, y, t) ≥ ψ1(x, y, t). A scheme which has this property is called

a monotone method. Denote the solution of our difference equation as ψn+1
i,j = H(ψn

i,j),
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where the function H is given from (7) and (8). Obviously, H will depend on ∆x and

∆t. To ensure that a numerical scheme is monotone, it is required that

∂

∂ψn
i,j

H(ψn
k,l) ≥ 0

for all i, j, k, l.

Carrying out all the possible forms of H (which depend on the upwinding) gives

the following CFL restriction on a uniform grid

2DCJ∆t

∆x
≤ 1 (19)

in two dimensions, and √
6DCJ∆t

∆x
≤ 1 (20)

in three dimensions. In general, monotone schemes are limited to first-order accuracy.

But the first-order stability results can be used for the second-order scheme, since

the second-order scheme reduces to first-order in nonsmooth regions (although the

second-order scheme will not strictly be monotone).

Now, consider the problem of determining the time step restriction due only to

the curvature-dependent terms, i.e. (7) and central differenced curvature terms. Also

assume a linear dependence on the curvature. Then the level-set equation becomes:

ψt = α
ψxxψ

2
y − 2ψxyψxψy + ψyyψ

2
x

ψ2
x + ψ2

y

,

where α is a positive constant. Notice the above can be rewritten as

ψt = α(a2ψxx − 2abψxy + b2ψyy) , (21)

where a2 + b2 = 1. For the purposes of this discussion, assume that a and b are

constants and carry out the standard von Neumann stability analysis on the resulting
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linear operator. The time step restriction for the “linearized” curvature dependent

term is
2∆t|α|
(∆x)2

≤ 1

in two dimensions, and
4∆t|α|
(∆x)2

≤ 1

in three dimensions. Thus, for the linear Dn(κ) = DCJ −ακ, the time step restriction

is
2DCJ∆t

∆x
+

2∆t|α|
(∆x)2

≤ 1 (22)

in two dimensions, and √
6DCJ∆t

∆x
+

4∆t|α|
(∆x)2

≤ 1 (23)

in three dimensions. The above time step restriction can be used for a nonlinear

Dn(κ), by replacing the constant, |α|, in (22) or (23), with max(|∂α/∂κ|).
Next, it is demonstrated that (7) and (9) with central-differenced curvature depen-

dent terms give second-order convergence. Although the truncation error of this

scheme is O(∆t)+O((∆x)2), second-order convergence is expected, since for stability

∆t ∝ (∆x)2 as ∆x → 0. Second-order convergence is demonstrated by comparison

with an exact solution.

The example problem will be an expanding quarter circle, whose center is at the

origin with an initial radius, r = 0.2. The numerical domain will be 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1, with symmetry conditions at x = 0 and y = 0, and nonreflective conditions

at x = 1 and y = 1. The relation Dn = 1 − 0.1κ is chosen to test the second-order

ENO–upwinding scheme. For error analysis purposes the error is measured on the

discrete L1 norm,

E1 =
∑
i,j

|texact
b − tnumerical

b |∆x∆y .
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The exact solution is obtained by noticing that the problem is really one-dimensional,

with the velocity of the front being only a function of the radius (κ = 1/r), and

by integrating the resulting ODE for the radius as a function of time. This gives

texact
b (x, y) =

√
x2 + y2 − 0.2 + 0.1 log[(0.1−

√
x2 + y2)/(0.1− 0.2)] (with

√
x2 + y2 ≥

0.2) Table 1 shows the error, E1, for several ∆x = ∆ys. The timestep was taken to

be 0.8 of the maximum allowed by (22). Also shown is the calculated numerical order

of accuracy, Rc. Notice that second-order convergence is achieved.

TABLE 1: Numerical accuracy for expanding circle with Dn = 1 − 0.1κ.

∆x = ∆y E1 Rc

1/40 1.14 × 10−3

1/80 3.26 × 10−4 1.81
1/160 8.70 × 10−5 1.91
1/320 2.16 × 10−5 2.01

2.8 3-D Seven-point detonation in PBX9502

A demonstration of the ability of a level-set formulation to handle 3-D multiple front

interaction easily is given by the following example. Take the Dn(κ) relation from

Figure 3, in a cube with length 64 mm. Initially, there are seven spherically expanding

detonations, six in a hexagonal pattern, and one in the center. See Figure 10. The

spherical detonations merge, then intersect the edges of the cube, and eventually burn

out of the domain. There is no special differencing needed when the fronts collide,

since the level-set function itself remains continuous.
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Figure 10: Seven-point detonation, shock front locations at 0, 3, 6 µs.
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3 Dynamics of a Ḋn − Dn − κ relation

Here a formulation for the level-set method for evolving a front which obeys a Ḋn −
Dn − κ relation is presented. This general formulation is then simplified for the case

where the (1-D) front may be expressed as a function of ψ(x, y, t) = y − ys(x, t) for

the stability analysis. It is shown that under appropriate conditions, this relation

is of hyperbolic type. Also noted is that Whitham’s equations for geometrical shock

dynamics can be written as a Ḋn−Dn−κ relation, and can be solved using a level-set

method described below. The DSD solutions using a Ḋn − Dn − κ relation will be

given in Chapter 5, along with direct numerical simulations.

3.1 Level-set formulation

The equation for the level-set function, ψ, is basically unchanged from (4), except

that the velocity, Dn, is now a variable. The level-set equation becomes

∂ψ

∂t
+ Dn|�∇ψ| = 0, (24)

and the total derivative of Dn is given as

D(Dn)

Dt
=

∂Dn

∂t
+ Dnn̂ ·

⇀

∇Dn = Ḋn(Dn, κ). (25)

Using the definition of the normal yields

∂Dn

∂t
+ Dn

⇀

∇ψ

|
⇀

∇ψ|
·

⇀

∇Dn = Ḋn(Dn, κ) (26)

where the total curvature is given in (5). These equations form a coupled set of

nonlinear PDEs for the evolution of the level-set function and its normal velocity.

Next, the mathematical type of such a relation will be discussed, along with its linear

stability.
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3.2 Mathematical type and stability

A Ḋn − Dn − κ relation is a second-order PDE, and under certain conditions it is

hyperbolic. Suppose a model, linear relation between the intrinsic quantities is given

as follows:

Ḋn = −ακ + β(Dn − DCJ). (27)

Again, assuming the front may be written as

ψ(x, y, t) = y − ys(x, t) = 0,

one can show that the PDE which describes the motion of the front will be

ys,t − Dn(1 + y2
s,x)

1/2 = 0. (28)

Now Dn is not a function of the curvature, κ, but rather the total derivative of Dn is

given from (27):

Dn,t −
ys,x

(1 + y2
s,x)

1/2
DnDn,x = −ακ + β(Dn − DCJ). (29)

Equations (28) and (29) are a coupled set of nonlinear PDEs for the evolution of the

shock front and the shock front’s normal velocity. Again, the stability and equation

type are easily seen when the limit ys,x → 0 is taken. One can do the equation type

analysis and stability for the general case, but there are no significant differences.

Under the small shock approximation, (28) and (29) become

ys,t − Dn = 0 (30)

and

Dn,t = αys,xx + β(Dn − DCJ). (31)

Substituting (30) into (31) gives a single second-order PDE

ys,tt − αys,xx = β(ys,t − DCJ), (32)
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which is the forced second-order linear wave equation (for α > 0) with characteristic

speeds ±√
α. Standard linear analysis shows that (32) is stable for β ≤ 0, and

unstable otherwise. For a general Ḋn−Dn−κ relation, the relation may be linearized

near a point in Ḋn − Dn − κ space and the local (frozen) stability results can be

obtained.

3.3 Whitham’s geometrical shock dynamics

It is interesting to note that other front theories outside of detonation dynamics

obtains Ḋn −Dn − κ relations. For example Whitham’s geometrical shock dynamics

equations [19] may be interpreted as a Ḋn − Dn − κ relation (here Dn is the Mach

number of the shock wave, and Ḋn is the shock acceleration in the normal direction).

The relation is given by

Ḋn = −(D2
n − 1)

λ(Dn)
κ

where

λ(Dn) =

(
1 +

2

γ + 1

1 − µ2

µ

) (
1 + 2µ +

1

D2
n

)

and

µ2 =
(γ − 1)D2

n + 2

2γD2
n − (γ − 1)

.

For these equations, ∂Ḋn/∂Dn changes sign at κ = 0, with κ > 0 being linearly

stable and κ < 0 being linearly unstable (i.e. diverging shock waves are stable, while

converging shocks are unstable). A contour plot of Ḋn is shown in Figure 11, for

γ = 1.4.
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Figure 11: Contours of Ḋn for Whitham’s Ḋn − Dn − κ relation with γ = 1.4.

40



3.4 Numerical implementation

Here, a numerical method for solving the level-set equations (24) and (26) is presented.

As seen for the Dn−κ relation, a level set method allows for very complex topological

changes at the front, and coupled with an internal boundary method can solve most

practical engineering problems.

But before the numerics are presented, note that any level set method may break

down if one level curve passes over another, i.e. the level-set function has a shock

form, with each level curve possessing a different value of Dn. The simplest example

of such a problem is given as follows. Suppose that initially the level curve of interest

is planar, for example at t = 0, ψ(x, y, t = 0) = x. This initial condition corresponds

to a flat wave along the y-axis, with a normal vector pointing in the ı̂ direction. If

Dn(x, y, t = 0) = 1 − x, and Ḋn = 0, then it is expected that the all level curves will

remain planar, and the level-set equations become

ψ,t = −Dn(ψ2
,x)

1/2

and

Dn,t + DnDn,x = 0.

Note that the equation for Dn is the inviscid Burgers equation, and that it is now

decoupled from the level-set equation. Obviously, given the above initial conditions,

the variables, ψ and Dn, will eventually form shocks in the normal direction, and

the strong solution will become multivalued. It is not just a question of finding the

proper weak solution to the above equations either, because the evolution of the level

curve ψ(x, y, t) = 0 should not be affected by the evolution of the other level sets. A

method to circumvent this problem, involving placing constraints on ψ and Dn away

from ψ = 0, is given next.

From the above example, it is clear that if Dn(x, y, t = 0) = constant, then there
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would have been no shocks in the solution. Notice that shocks may form in the

tangential direction of the surface, and the evolution may be well posed. Such an

example would be Whitham’s shock-shocks, where the velocity of the front jumps

along with the angle of the front. Thus, the concern is with keeping discontinuities

from forming in the normal direction.

Since the motion of the level curve ψ(x, y, t) = 0 is the only level curve of interest,

one may alter the velocity, Dn, and level-set function, ψ, away from ψ = 0, and still

not affect the motion of the level curve of interest (ψ = 0). In particular, if the

level curves away from the zero level curve are kept from forming shocks, and the

velocity, Dn, is kept from forming shocks in the normal direction of the fronts, then

the evolution should remain well posed. A numerical method for keeping the solution

from forming unwanted shocks is given next.

Constraints on the gradients of Dn and ψ are sufficient to keep the numerical

problem well posed. Note that the gradients of ψ and Dn can be changed while

keeping the ψ and Dn constant at ψ = 0. Next, two hyperbolic PDEs are described

that will satisfy the above criteria when evolved to steady state. These are the re-

distance PDE of Sussman, Smereka and Osher [20],

ψ,τ = S(ψ)(1 − |
⇀

∇ψ|), (33)

and a new PDE which keeps Dn from forming shocks in the normal direction,

Dn,τ = −S(ψ)

⇀

∇ψ

|
⇀

∇ψ|
·

⇀

∇Dn, (34)

where S(ψ) is the sign function, and τ plays the role of time. It can be seen upon

examination of the above PDEs, that they are hyperbolic, and that information travels

outwards from the level curve ψ = 0. In characteristic form, the above equations

become

ψ,τ + S(ψ)n̂ ·
⇀

∇ψ = S(ψ) (35)
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and

Dn,τ + S(ψ)n̂ ·
⇀

∇Dn = 0 (36)

where again

n̂ =

⇀

∇ψ

|
⇀

∇ψ|
.

Thus, information propagates at speed 1 in the normal direction pointing away from

the level curve, ψ = 0. Therefore, the state at ψ = 0 is unchanged by evolving the

above PDEs. Notice that when the above PDEs reach steady state, the level-set

function will be the distance function, and that the gradient of Dn along the normal

direction will be zero. Thus, if any unwanted discontinuities start to form, the above

PDEs will eliminate them. A simple one-dimensional example is given next.

Suppose the initial conditions for the reinitializing PDEs, (33) and (34), are

ψ(x, t = 0) = 2x, and Dn(x, t = 0) = 1 − x. Since the problem is one-dimensional,

solutions via the method of characteristics are easily obtained:

ψ =
{

x |x| ≥ τ
2x − τ |x| < τ

and

Dn =
{

1 |x| ≥ τ
1 − x + τ |x| < τ.

Figure 12 shows this solution graphically at τ = 0 and τ = 1.

If it could be guaranteed that (33) and (34) were in equilibrium (i.e. steady state),

then the level-set equations (24) and (26) would reduce to the following:

ψ,t = −Dn (37)

and

Dn,t = Ḋn(Dn, κ). (38)

Since the level curve zero is the only level curve of interest, the above reduced level-set

equations would be valid near ψ = 0 after (33) and (34) are evolved for a short period
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of time. Thus the following algorithm is proposed for solving Ḋn − Dn − κ relations

using a level-set approach:

Step 1. Solve (33) and (34) to steady state near ψ = 0

at the beginning of every Runge–Kutta cycle.

Step 2. Update the variables, ψ and Dn, according to (37) and (38)

by a second-order Runge–Kutta method.

Step 3. Repeat Step 1 and Step 2 until final time is reached.

The discretization of the above PDEs is as follows.

First, the sign function is replaced by the “smooth” sign function, as in [20]:

S(ψ) =
ψ√

∆x + ψ2
.

Notice that the above will be zero at the level curve zero. The |
⇀

∇ψ| term in (33) is

calculated using the second-order ENO–upwinding procedure, as in Section 2.4.

The time integration for this equation is simple forward Euler; since it will run to

steady state, the time discretization errors are of no consequence.

Equation (34) also uses a forward Euler time integration procedure for the same

reason as above. The normal, n̂ =
⇀

∇ψ/|
⇀

∇ψ|, is approximated by central-differences,

and the spatial derivatives for Dn are given by second-order ENO–upwinding in each

of the spatial directions.

The reduced level-set equations, (37) and (38), are integrated using the second-

order Runge–Kutta algorithm as follows:

ψ(1) = ψ(n) − ∆tD(n)
n

D(1)
n = D(n)

n + ∆tḊn(D(n)
n , κ(n))

followed by

ψ(n+1) =
1

2
ψ(n) +

1

2
ψ(1) − 1

2
∆tD(1)

n
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D(n+1)
n =

1

2
D(n)

n +
1

2
D(1)

n +
1

2
∆tḊn(D(1)

n , κ(1)),

where the superscript (n) denotes the old time level, superscript (1) denotes an inter-

mediate state, and (n + 1) denotes the new time level.

Note, that in the beginning of every Runge–Kutta step, the equations (33) and

(34) are evolved to steady state near ψ = 0. This procedure is accomplished by

solving (33) and (34) for five “time steps”, where ∆τ = 0.283∆x. This choice for ∆τ

can be shown to be monotone stable for the first-order upwind scheme. The analysis

is the same as in Section 2.7. Since (33) and (34) propagate information at a speed

of one, then after 5 “timesteps”, the reinitializing PDEs will be in equilibrium for

|ψ| < 5∆τ = 1.415∆x, i.e. for |ψ| < 1.415∆x, ψ will be the distance function, and

the directional derivative of Dn in the normal direction will be zero.

3.4.1 Internal boundary method

A simple, reflective internal boundary method has been used to treat arbitrarily

complex two dimensional problems. It is a simplification of the previous, Section 2.6,

implementation. If only the perfect reflection condition need be treated, then a very

simple algorithm will give the appropriate state, ψ and Dn, at internal boundary

nodes. See Section 2.6 for definitions, etc. First define a new nonevolving level-set

function, φ, to be the signed distance function, equal to zero at the boundary, with

φ > 0 in the boundary region, and φ < 0 in the flow region. Second, find all internal

boundary nodes. These will be defined as points where φ > 0, and at any of the

eight surrounding nodes, φ ≤ 0. This procedure is exactly the same as in Section 2.6.

Then find the location of the reflected point, Pr, which is located 2φ away from the

internal boundary node, in the direction of −n̂b, where n̂b =
⇀

∇φ/|
⇀

∇φ|. See Figure

13. The variables, ψ and Dn, at the internal boundary node will be the state at the

reflected point, Pr (for perfect reflection.) Again, the variables at Pr are given from
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Figure 13: Schematic of internal boundary method grid for level-set solution of Ḋn −
Dn − κ relations. • interpolated stencil point, � internal boundary node (i, j).

second-order bilinear interpolation. Then, the iterative technique in Section 2.6 is

used to solve for the internal boundary node state.

3.4.2 Shock–shock calculations

Here, some shock–shock problems using Whitham’s Ḋn−Dn−κ relation are computed

to see if the simple algorithm described above can reproduce the correct shock–shock

angles described in [19]. Five tests are run with an incident Mach number of 100,

converging on a perfectly reflecting wall, at an angle, θ, relative to the incident

shock normal direction. The exact solution, in the strong shock limit for Whitham’s

equations, is a simple discontinuity in the velocity of the front, with a kink in the

shock locus to satisfy the reflective boundary conditions. See Figure 14 for the details
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of the geometry. The weak solution given by Whitham’s Mach number area rule is

shown as the solid line in Figure 14. The level-set solutions for the five different

incident angles are also shown in the figure. The agreement is adequate, considering

that the angles were calculated by picking off locations on the numerical grid. The

error bars in Figure 14 represent the error in accuracy of the measurement from the

numerical grid (about ± 1 degree). This seems encouraging, that the above simple

discretization may give the proper jump conditions. But, it seems that when the

entire problem is rotated on the grid, the shock–shock angles can be off by as much

as 5 degrees. Similar anisotropic grid effects have been observed, and fixed, for level

set methods with one-dimensional-based discretizations [21]. It is likely that these

other “grid-free” discretizations would fix this problem.

3.4.3 Shock diffraction over a circular cylinder

Here, an example of the level-set solution to Whitham’s geometrical shock dynamics is

presented to demonstrate the level-set capability of dealing with topological changes

and complex boundary problems. It was originally studied by Bryson and Gross [9]

to test Whitham’s theory. They used a characteristic based method which dealt with

the shock–shock interactions separately.

The problem is diffraction of a planar shock by a circular cylinder. The shock has

an incident Mach number of 2.81, and is traveling to the right in Figure 15. Once the

incident shock hits the cylinder, the shock splits into two pieces, and a pair of shock–

shocks are formed. Then each piece diffracts around the cylinder and join together

again to form a second pair of shock–shocks. Qualitatively, the results are similar to

Bryson and Gross, although there are small differences in the shock shape. Again,

this may be due to anisotropic grid effects. Also, Bryson and Gross did not start to

integrate the solution when the shock first hits the cylinder, but just after the first

shock–shocks form. This may also cause some slight discrepancies.
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Figure 15: Level-set GSD solution to a planar, Mo = 2.81, shock diffracting over
a circular cylinder. Shock travels from left to right. Solid lines represent fronts at
various times; dashed lines are locations of shock–shocks.
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4 Dynamics of a D̈n − Ḋn − Dn − κ̇ − κ relation

Here, the dynamics of a D̈n−Ḋn−Dn−κ̇−κ relation are discussed. Recently, Stewart

and Yao [4] derived a new detonation shock evolution equation that was based on

the combined limits of near-Chapman–Jouguet (CJ) velocity, small shock curvature,

slow temporal variation measured on the particle passage time through the reaction

zone and large dimensionless activation energy. It is a relation between the second

normal time derivative of normal detonation velocity, D̈n, the first time derivative

of the normal detonation velocity, Ḋn, the normal detonation velocity, Dn, the time

derivative of the total curvature, κ̇, and the total curvature, κ.

A level-set formulation is presented, followed by a discussion of the mathematical

type and linear stability. A numerical method for solving D̈n − Ḋn − Dn − κ̇ − κ

relations in a channel geometry is given. And a numerical example will demonstrate

the cellular behaviour of the intrinsic relation.

4.1 Level-set formulation

Here a formulation for the level-set method for evolving a front which obeys a D̈n −
Ḋn − Dn − κ̇ − κ relation is presented. The equation for the level-set function, ψ, is

exactly as in (24):
∂ψ

∂t
+ Dn|�∇ψ| = 0, (39)

and again, total derivative of Dn is given as

D(Dn)

Dt
=

∂Dn

∂t
+ Dnn̂ ·

⇀

∇Dn = Ḋn. (40)

Using the definition of the normal yields

∂Dn

∂t
+ Dn

⇀

∇ψ

|
⇀

∇ψ|
·

⇀

∇Dn = Ḋn. (41)
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The total derivative of acceleration, is given as

D(Ḋn)

Dt
=

∂Ḋn

∂t
+ Dnn̂ ·

⇀

∇Ḋn = D̈n(Ḋn, Dn, κ̇, κ). (42)

Using the definition of the normal yields

∂Ḋn

∂t
+ Dn

⇀

∇ψ

|
⇀

∇ψ|
·

⇀

∇Ḋn = D̈n(Ḋn, Dn, κ̇, κ), (43)

where κ̇ is the total derivative of the curvature:

κ̇ =
∂κ

∂t
+ Dn

⇀

∇ψ

|
⇀

∇ψ|
·

⇀

∇κ. (44)

Again, the above are for general problems. Note that the PDEs (39), (41), and (43)

can be rewritten as a single third-order PDE. This will be useful for discussing the

mathematical type and stability. These PDEs can be simplified for fronts which can

be represented by ψ(x, y, t) = y − ys(x, t) = 0. A numerical algorithm for such a

simplification is presented in 4.3.

4.2 Mathematical type and stability

An evolution equation governed by a D̈n−Ḋn−Dn−κ̇−κ relation is a wave hierarchy

in the sense discussed by Whitham [19]. To illustrate this, consider the perturbation

of the detonation shock from CJ, steady, plane, (Dn = 1). Represent the shock

surface as ψ = y− t−φ(x, t), where φ is small. The definitions of the normal velocity,

curvature and normal surface derivatives imply, Dn − 1 ∼ φ,t, Ḋn ∼ φ,tt, D̈n ∼ φ,ttt,

κ ∼ −φ,xx and κ̇ ∼ −φ,xxt. Substitutions show that a D̈n − Ḋn − Dn − κ̇ − κ

relation is a third-order PDE in time and second order in space. Our interest is in

the choice of physical parameters such that the intrinsic relation is hyperbolic and

admits transverse waves on the shock.

The D̈n − Ḋn − Dn − κ̇ − κ relation derived in [4] is:

(Dn − 1) + C1θD̈ne
−2µθ(Dn−1) + [C2θ + C3 + C4θ(Dn − 1)]Ḋne

−µθ(Dn−1)

52



+C5(θḊn)2e−2µθ(Dn−1) + C6
LCJ

θ
+ (C7θ + C8)e

−2µθ(Dn−1)κ̇ = 0, (45)

where LCJ is

LCJ = ln |1 + d θ κe−µθ(Dn−1)|, (46)

The coefficients, µ, d and C1 through C8 are functions of only of γ and δ, where

δ = 1/M2
CJ and MCJ is the Mach number of the plane CJ detonation. The expressions

are derived and expressed in a sequential list in [4]. Figure 16 displays the relevant

C1 − C8, µ and d versus δ for γ = 1.6, representative of a stoichiometric mixture of

H2, O2, diluted with 70% Ar. The term θ is a scaled activation energy.

The highest-order wave operator comes from a pairing of D̈n and κ̇, which is a

time derivative of a second-order wave operator of the form ∂/∂t(φ,tt − a2φ,xx). The

square of the hyperbolic wave speed is simply the ratio of the coefficient of κ̇ and D̈n,

a2 =
C7θ + C8

C1θ
. (47)

Similarly, a subhyperbolic wave operator appears of the form φ,tt − a2
subφ,xx, from the

pairing of Ḋn and κ and the square of the subhyperbolic wave speed is simply the

ratio of the coefficient of κ and Ḋn.

a2
sub =

d C6

C2θ + C3

. (48)

Finally, φ,t is the operator associated with Dn − 1, and has zero wave speed.

The conditions for a D̈n − Ḋn −Dn − κ̇− κ relation to be hyperbolic and subhy-

perbolic are respectively

C7θ + C8 > 0 and C2θ + C3 > 0. (49)

A stability criterion based on the wave speeds from [19] is

0 < a2
sub < a2, stable, and 0 < a2 < a2

sub, unstable. (50)
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The D̈n − Ḋn − Dn − κ̇ − κ relation linearized about the plane, CJ detonation is

φ,t + (C1θ)φ,ttt + (C2θ + C3)φ,tt − (d C6)φ,xx − (C7θ + C8)φ,xxt = 0. (51)

The dispersion relation with φ = eωt+ikx is

ω + (C1θ)ω
3 + (C2θ + C3)ω

2 + (d C6)k
2 + (C7θ + C8)k

2ω = 0. (52)

The neutrally stable frequency ω = iωIm, and wave number are

(ω2
Im)ns =

1

C1θ

(
a2

sub

a2
sub − a2

)
, k2

ns =
1

C1θ

(
1

a2
sub − a2

)
, (53)

with the corresponding wave length

λns =
2π

kns

= 2π
√

C1θ(a2
sub − a2). (54)

For the special one-dimensional case of k = 0, the neutral stability boundary is given

by the condition (C2θ + C3) = 0 which also corresponds to a2
sub = ∞.

The limiting form of the complex growth rate ω, for k → ∞, as calculated from

the dispersion relation, is to O(1)

ω =
dC6

2C1θ

(
1

a2
− 1

a2
sub

)
± i ka2 + . . . (55)

Consistent with this result, it can be shown for the unstable condition a2 < a2
sub,

that there is a continuum of unstable wave numbers that in general runs from kns to

k = ∞ . Likewise for a2
sub < a2, all k are stable.

The valid parameter range for the application of (45) is partially indicated by its

dispersion relation. For hyperbolic evolution, one must have parameters, γ and δ

such that C7θ + C8 > 0. At the hyperbolic boundary where C7θ + C8 = a2 = 0+,

formula (55) shows that real growth rates for small disturbances are infinitely large.

Indeed, crossing this parameter boundary corresponds to a change in type of (45),

from hyperbolic to elliptic. The conclusion is, of course, that on the unphysical
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(elliptic) side of the boundary the asymptotic description breaks down, and additional

physics in the form of dynamic and curvature corrections, must be included.

The stability boundary a2 = a2
sub, has stable transverse disturbances on the side

where a2 is larger than a2
sub, and unstable transverse disturbances where a2

sub is larger

than a2. Standard considerations of unstable wave hierarchies show that on the unsta-

ble side, one expects the formation of discontinuous solutions, [19]; in this case, shock–

shocks. Indeed this is what is found when numerical solutions of (45) are carried out

(as shown in [4] and in the next section). The parametric region where self-sustained,

well-posed cellular dynamics occurs is given by the three inequalities, C2θ + C3 > 0,

C7θ + C8 > 0, and a2
sub > a2.

4.3 Numerical method for channel-type geometry

The numerical solutions are carried out for the shock location y = ys(x, t), where

y is the direction along the channel axis and x is the distance across the channel.

Equations (39),(41) and (43) are solved as a system of three first-order PDEs with,

ys, Dn and Ḋn as the dependent variables. The “channel” equations are given as the

level-set equations, with ψ(x, y, t) = y − ys(x, t). These are:

ys,t = Dn

(
1 + y2

s,x

)1/2
(56)

Dn,t =
ys,x(

1 + y2
s,x

)1/2
DnDn,x + Ḋn (57)

Ḋn,t =
ys,x(

1 + y2
s,x

)1/2
DnḊn,x + D̈n(Ḋn, Dn, κ̇, κ) (58)

where the front normal is given as

n̂ =
ys,x(

1 + y2
s,x

)1/2
ı̂ +

1(
1 + y2

s,x

)1/2
̂
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and the curvature, and the normal time rate of change of the curvature are

κ =
⇀

∇ · n̂ = − ys,xx(
1 + y2

s,x

)3/2

κ̇ = κ,t −
ys,x(

1 + y2
s,x

)1/2
Dnκ,x .

The time integration uses a third-order Runge–Kutta algorithm, described in detail

in Section 5.2. All that is left then, is to evaluate the spatial derivatives and forcing

on the right hand side. The advective spatial derivatives in (56), (57), (58), and in

κ̇ that appear are treated using second-order ENO–upwinding, as in Chapter 2 and

3. The curvature is calculated using second-order central-differences, and the forcing

terms are just an evaluation.

4.4 Evolution of cellular dynamics

To visualize the solutions predicted by the D̈n−Ḋn−Dn−κ̇−κ relation, one imagines

a smooth shock segment, with a reaction zone starting at the shock at n = 0, and

ending at the sonic locus at nCJ . The locus nCJ identifies the location of the fire,

or thin zone of main reaction and the width of the induction zone (IZ) between the

shock and fire. The leading order formula for nCJ , from [4] is

nCJ = −(γ − 1 + 2δ)

γ + 1

(
c4
s

α

)
e−µθ(Dn−1), (59)

where c4
s/α = {2(γ − 1+2δ)2[2γ + δ(γ − 1)]2}/{(1− δ)[γ(3− γ)− δ(3γ − 1)](γ +1)2}.

Thus two fronts, one for the shock locus, and one for the sonic locus are determined

by solving (45) and subsequently evaluating (59). The theory predicts the smooth

and parametric variation of the states between the shock and sonic locus.

Here, a description of the character of the numerical solution to (45) for values

of the parameters in the cell region of the E − Q plane is given. The numerical

solutions were generated for a simplified version of (45), where the terms (Dn − 1)Ḋn
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and (θḊn)2 where dropped, while the nonlinearity of LCJ was retained, so that the

following is solved

(Dn − 1) + C1θD̈ne
−2µθ(Dn−1) + [C2θ + C3]Ḋne

−µθ(Dn−1)+

C6
LCJ

θ
+ (C7θ + C8)e

−2µθ(Dn−1)κ̇ = 0. (60)

Figures 17 and 18 show an example of the solution to (60) in terms of a gray-scale

contour plot of the value of Dn that is attained at each fixed point in the channel

when the shock crosses that point, for parameters Q = 2.5, E = 5 and γ = 1.6. This

contour plot effectively produces a simulated smoke foil. Two segments of the channel

are shown. The shock travels from left to right, and starts from the top. At time

t = 0 the shock is assumed to be flat, with an initial, sinusoidal velocity disturbance

Dn = 1 + 0.3 cos(0.96πx) + 0.02sin(πx/25) and Ḋn = 0. Initially the detonation

shock appears quite flat, but the strength of the small transverse waves grows. As

the detonation propagates the cells merge and grow in size and strength and appear

to saturate.

Figure 18 shows an enlargement of the box in Figure 17, with instantaneous con-

tours of the shock locus (solid line) and sonic locus (broken line). In regions where

shock velocity is above CJ (overdriven) the fire is close to the shock, while when the

shock velocity is below CJ (underdriven), the fire is relatively farther away from the

shock, in accordance with observations by the experimentalists carried out with smoke

foils. The variation in the normal detonation velocity as computed in the numeri-

cal solution, is between approximately 0.7 and 1.4, which is in both qualitative and

quantitative agreement for that reported in the experimental accounts [22], [23].

Through the course of many simulations of (45), it is found that the neutral

stability wavelength, λns, is a good predictor of the final stable cell widths observed

in the simulations, if the channel walls are wide enough. This yields a criterion for
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determining cell spacing as λcell = λns = 2π/kns = 2π
√

C1θ(a2
sub − a2). Figure 19

shows contours of constant λns according to (54) in the E − Q parameter plane,

for γ = 1.6. The cell aspect ratio W/L can be predicted by the reciprocal of the

transverse wave speed a, i.e. W/L = 1/a.
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Figure 17: Gray-scale plot of Dn versus fixed locations in space. The boxed region is
shown in more detail in Figure 18.
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Figure 18: Gray-scale plot of Dn with instantaneous shock fronts given as solid lines.
The location of the fire for three times are given as dashed lines.
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Figure 19: Regions of cellular dynamics and 1-D unstable dynamics are shown as light
and dark gray shades respectively for γ = 1.6. Solid numbered lines are contours of
constant λns. The (*) represents the location in parameter space that corresponds
with Figures 17 and 18.
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5 Comparison of DNS and level-set solution of DSD

Here, comparisons between DSD theory with direct numerical simulation (DNS) of

detonations are made. The direct numerical simulations were carried out with a code

described in Section 5.2. The code is based on a high-order Godunov-type shock-

capturing scheme. Of particular interest is the location and subsequent dynamics of

the detonation front. In Section 5.1, the mathematical formulation of the detonation

model used in the DNS is presented.

Since DSD theory is an approximate theory, one would like to know how well

the theory predicts shock front evolution. One way of accomplishing this goal is

to compare a DSD solution to an exact solution of a multi-dimensional detonation

problem. Unfortunately, this is not possible. The best one can do is to have a

resolved numerical simulation of the reactive, compressible Euler equations. Then

comparisons of the dynamics of the shock front from DSD theory to the resolved

DNS can be made. Next, an algorithm for solving the compressible reactive Euler

equations will be presented, along with comparisons with DSD theory.

5.1 Reactive Euler equations

The reactive Euler equations are given by the conservation of mass, momentum, and

energy and a reaction rate law as follows:

Dρ

Dt
+ ρ�∇ · �u = 0 ,

ρ
D�u

Dt
+ �∇p = 0 ,

De

Dt
+ p

D(1/ρ)

Dt
= 0 ,

Dλ

Dt
= r(p, ρ, λ) , (61)
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with the ideal equation of state

e =
p

ρ(γ − 1)
− Qλ ,

where Q is the heat of detonation, λ is the reaction progress variable (λ = 0 for

unreacted material, and λ = 1 for completely reacted material), and r is the reaction

rate.

Written in conservative form, in 2-D Cartesian coordinates, these become:

(ρ)t + (ρu)x + (ρv)y = 0 ,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0 ,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0 ,

(E)t + (uE + up)x + (vE + vP )y = 0 ,

(ρλ)t + (ρuλ)x + (ρvλ)y = ρr(p, ρ, λ) (62)

where

E = ρe +
ρ

2
(u2 + v2)

is the total energy. Next, a numerical method will be presented to solve the above

conservation equations.

5.2 Numerical methods for simulation of the reactive Euler
equations

The algorithm for numerically solving the reactive Euler equations will be based on

Shu and Osher’s semi-discrete (method of lines) ENO scheme [24]. The purpose of

picking this algorithm is two-fold. First, by formulating the problem in a semi-discrete

manner, spatial and temporal discretization are accomplished independent of one

another. This makes the code easy to write for multi-dimensional forced problems.
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The second reason is that by using high-order spatial and temporal discretization,

very accurate solutions are obtainable (formally at least in continuous regions of the

flow).

The method of lines, in effect, splits the temporal differencing from the spatial

differenecing. Thus each may be described separately as follows. View (62) in the

following vector form:

ut = L(u) (63)

where the vector u represents the vector of conservative variables in (62), and L(u) is

the spatial derivative operators and source term. A numerical approximation to L(u)

will be denoted as L(u)+O(∆xm), where m is the spatial order of the accuracy. Once

the initial conditions are given, then the time discretization along with the spatial

discretization define the algorithm completely.

First, a third-order Runge–Kutta time discretization will be given, one that advances

u(n) to u(n+1), where n represents the time level of the solution. The third-order time

integration can be written as the following:

u(1) = u(n) + ∆tL(u(n))

u(2) =
3

4
u(n) +

1

4
u(1) +

1

4
∆tL(u(1)) (64)

u(n+1) =
1

3
u(n) +

2

3
u(2) +

2

3
∆tL(u(2))

Other orders of time integration from first-order to fifth-order have been given in [12].

The above third-order scheme was the one used in the following computations. Now

only the operator L(u) need be given to advance the solution according to (64).

The operator L(u) consists of the x−flux, y−flux and the source term in the

following way:

L(u) = −fx − gy + s(u)
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For the scheme to be conservative, the discrete quantities (f i,j)x and (gi,j)y defined

at node locations (i, j) must be of the form

(f i,j)x = (f i+1/2,j − f i−1/2,j)/∆x

and

(gi,j)x = (gi,j+1/2 − gi,j−1/2)/∆y.

The source term, s(u), in this formulation is simply an evaluation at the node point

(i, j). Next, an algorithm for computing the intermediate flux function, f i+1/2,j, is

presented. The others are computed in an analogous fashion.

The method of calculating f i+1/2,j consists of the following steps:

Step 1: Define an averaged state between nodes (i, j) and (i + 1, j),

by Roe’s method.

Step 2: Calculate eigenvalues, λ, right eigenvectors, r(p) and

left eigenvectors, l(p) of the averaged Jacobian matrix,

here p represents each characteristic field (p = 1, 2, ..., 5).

Step 3: Decompose the flux vector, f , into characteristic

field fluxes, f c, through the use of the left eigenvectors.

Step 4: Interpolate each characteristic flux, f (p)
c , via ENO, and upwinding

in the appropriate direction given by the sign of the

eigenvalue for that characteristic flux field.

Step 5: Map the characteristic fluxes back to the primitive flux

function via the right eigenvectors.

The details of this algorithm are as follows.

The algorithm first needs to define an averaged state, to define an averaged Jaco-

bian matrix. Roe’s method reduces to the following averages in the x-direction:

ρ̄i+1/2,j =
√

ρi,jρi+1,j
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ūi+1/2,j =
ui,j

√
ρi,j + ui+1,j

√
ρi+1,j√

ρi,jρi+1,j

v̄i+1/2,j =
vi,j

√
ρi,j + vi+1,j

√
ρi+1,j√

ρi,jρi+1,j

λi+1/2,j =
λi,j

√
ρi,j + λi+1,j

√
ρi+1,j√

ρi,jρi+1,j

H̄i+1/2,j =
Hi,j

√
ρi,j + Hi+1,j

√
ρi+1,j√

ρi,jρi+1,j

where

H =
E + p

ρ

is the enthalpy. Any other component of (62) can be computed as a function of the

above averages.

Next, the Jacobian matrix for (62) is evaluated at the averaged state:

J =




0 1 0 0 0
β
2
q̄2 − ū2 (3 − γ)ū −v̄β β Qβ
−ūv̄ v̄ ū 0 0

−βū(H̄ − q̄2

2
) H̄ − βū2 −ūv̄β γū βQū

−ūλ̄ λ̄ 0 0 ū


 ,

where β = γ − 1, and q̄2 = ū2 + v̄2.

From this matrix, the eigenvalues, right eigenvectors and left eigenvectors can be

computed:

λ =




ū − c̄
ū
ū
ū

ū + c̄




are the eigenvalues and the right eigenvectors are the columns of

R =




1 1 1 1 1
ū − ā ū ū ū ū + ā

v̄ v̄ − ā v̄ v̄ + ā v̄
H̄ − ūā q̄2

2
− v̄ā − Q q̄2

2
q̄2

2
+ v̄ā − Q H̄ + ūā

λ̄ 1 0 1 λ̄
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i.e.

R = [ r(1) r(2) r(3) r(4) r(5) ]

and the left eigenvectors are the rows of

L =
1

2ā2




ūā + βq̄2 −(ā + βū) −βv̄ β βQ

v̄ā − β q̄2

2
λ̄ βūλ̄ −a + βv̄λ̄ −βλ̄ ā2 − βQλ̄

2a2 − β(1 − λ)q2 2β(1 − λ)u 2β(1 − λ)v −2β(1 − λ) −2β(1 − λ̄)Q − 2ā2

−v̄ā − β q̄2

2
λ̄ βūλ̄ ā + βv̄λ̄ −βλ̄ a2 − βλ̄Q

−ūā + β q̄2

2
λ̄ ā − βū −βv̄ β βQ




i.e.

L =




l(1)

l(2)

l(3)

l(4)

l(5)


 .

A characteristic flux will be given as f (p)
c = l(p) · f . Now, for each characteristic flux

field there is an associated eigenvalue. If the eigenvalue is negative, then the wave is

coming from the right, and a first-order scheme would approximate the characteristic

flux as the left eigenvector dotted with the flux vector, evaluated at the (i + 1, j)

node. If the eigenvalue for a characteristic flux is positive then the characteristic flux

is evaluated at the (i, j) node. To achieve high-order accuracy, these characteristic

flux functions need to be interpolated to the (i + 1/2, j) location. To make this more

concrete, take an example where the eigenvalue for the pth field is positive, then the

first-order characteristic flux would be

f (p)
c (i + 1/2, j) = l(p) · f(i, j).

To achieve mth order accuracy (for a positive eigenvalue), calculate the characteristic

fluxes at each of the surrounding m−1 points (i.e. for third-order, calculate f (p)
c (h, j),

where h = i − 2, i − 1, i, i + 1, i + 2. Then (for third-order accuracy) center-biased

ENO interpolation is used on these five characteristic fluxes to obtain a high-order
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approximation to the characteristic flux function at (i+1/2, j). In essence, the third-

order center-biased ENO algorithm chooses a three point stencil, which contains the

node (i, j) and two others. Then a quadratic interpolant is used to evaluate the

interpolated function at (i + 1/2, j). It was pointed out in [25] and [26] that it is

advantageous for accuracy and stability to make the scheme center-biased. This is

accomplished by the following algorithm:

Step 1: Let k = 0.

Step 2: if | f (p)
c (i, j) − f (p)

c (i − 1, j) |< 2 | f (p)
c (i + 1, j) − f (p)

c (i, j) | then k = k − 1.

Step 3: if 2 | f (p)
c (k + i + 1, j) − 2f (p)

c (k + i, j) + f (p)
c (k + i − 1, j) |<

| f (p)
c (k + i + 2, j) − 2f (p)

c (k + i + 1, j) + f (p)
c (k + i, j) | then k = k − 1.

Here, k represents the left most point of the stencil relative the node (i, j). Effectively,

Step 2 finds the second point of the stencil, either (i+1, j) or (i−1, j), whichever has

a smaller (in magnitude) first derivative (but it biases to the left due to the 2 on the

right hand side of the inequality). And then, Step 3 adds the third point of the stencil,

either the point to the left of the previous stencil or the point to the right, depending

on which has a smaller (in magnitude) second derivative (now it biases to the right

due to the factor of 2 on the left hand side of the inequality). The standard ENO

scheme [12] is the above algorithm without the factors of 2 in front of the magnitude

of the derivatives. In any event, once a stencil is chosen, a conservative quadratic

fit is made through the resulting three nodes. This is equivalent to keeping that the

integral of this fitted quadratic equation divided by ∆x in each of the “cells” must give

the “cell” average value back. The word “cell” is in quotes because the code really

only uses point values, but it was shown in [12] that the interpolation procedure is the

same. Again, all that is needed is the characteristic flux at the (i + 1/2, j) location.

This value is given by

69



if k = −2: then

f (p)
c (i + 1/2, j) = 1

3
f (p)

c (i − 2, j) − 7
6
f (p)

c (i − 1, j) + 11
6
f (p)

c (i, j)

if k = −1: then

f (p)
c (i + 1/2, j) = −1

6
f (p)

c (i − 1, j) + 5
6
f (p)

c (i, j) + 1
3
f (p)

c (i + 1, j)

if k = 0: then

f (p)
c (i + 1/2, j) = 1

3
f (p)

c (i, j) − 5
6
f (p)

c (i + 1, j) − 1
6
f (p)

c (i + 2, j).

Note, for characteristic fluxes which have a negative eigenvalue, one can use the

above interpolation procedure by shifting the first point in the stencil to (i+1, j) (i.e.

the upwind point), and changing the (i − 1, j)s to (i + 1, j)s, etc.

Once all the characteristic fluxes have been computed at (i + 1/2, j), then the

primitive flux functions may be recovered by multiplying by the rows of the R matrix,

i.e. f (1)(i + 1/2, j) would be the first row of R dotted with the characteristic flux

vector, f c, etc. Likewise, the other intermediate flux functions may be calculated in

a similar fashion.

This algorithm works well for most regions of the flow, but it may break down in

regions where the eigenvalue changes sign between two nodes. Then that character-

istic flux is calculated using a local-Lax–Friedrichs approach. This approach, instead

of upwinding (which doesn’t make much sense when the eigenvalues are of different

sign), breaks the characteristic flux function into two parts, a “positive” flux function,

f+, and a “negative” flux function, f−. Here, it is implied that characteristic fluxes

are still being calculated. The definitions of these are:

f+ =
1

2
(f + αv)

and

f− =
1

2
(f − αv)

70



where f is the characteristic flux function, and v is the characteristic variable, given

from the dot product of the left eigenvector with the primitive variable. The interme-

diate flux function is given as f = f+ +f−. The term, α, plays the role of a viscosity,

and is equal to the maximum eigenvalue (in absolute sense) of the two nearby nodes,

i.e. (i, j) and (i + 1, j) when calculating the flux function at (i + 1/2, j). Now, high-

order approximations to f+ and f− are needed at (i + 1/2, j). Say for third-order,

the f+s are defined at five nodes (i+h, j), and the f−s at the five nodes (i+h+1, j),

where h = −2, ..., 2. Each of these are interpolated separately by the ENO algorithm

described above, and then the intermediate flux function, f is then computed. This

algorithm is very similar to one used in [27] to fix Roe’s (or any other upwind scheme)

at points where characteristic speeds change sign on the grid.

Note, other interpolation schemes, such as min mod and Superbee TVD, higher-

order ENO and weighted ENO schemes can easily be used with the above algorithm,

by simply adding or subtracting the number of nodes where the characteristic fluxes

are defined. The three direct simulations described below were all calculated using

the above described third-order ENO scheme. This completes the description of

the interior algorithm. Next, an internal boundary method for Euler equations is

described.

5.3 An internal boundary method for the Euler equations

Here, a perfectly reflecting internal boundary method for the Euler equations is pre-

sented. This methodology is almost identical to the method for the internal boundary

method as applied to the level-set Ḋn −Dn −κ algorithm. Again, a nonevolving level

set function, φ, is defined as the signed distance function, with φ = 0 at the boundary,

φ < 0 in the flow region, and φ > 0 in the boundary region. The internal boundary

points are defined as any point that has φ > 0, and any of the mth points to the left,
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right, up or down have φ < 0. Here, m is the order of the scheme (or the number

of boundary points the scheme needs), for example choosing m = 4 would be appro-

priate for a fourth-order scheme. For each internal boundary point there exists an

associated reflected point, Pr, in the flow region. The internal boundary point will

have the same state as the reflected point, except that the normal component of the

velocity (or normal component of the momentum) will be of equal magnitude, but

of opposite sign. This again reduces to a set of (possibly) coupled linear algebraic

equations, and is solved using the iterative technique in Section 2.6.

5.4 Numerical solutions to 2-D unsteady detonations

Here, comparisons between direct numerical simulation of detonation, and level-set

solutions to three intrinsic PDEs are made. The three intrinsic relations are: the

Huygens’ construction, a Dn − κ relation and a Ḋn − Dn − κ relation. For our

comparison, we take

r = 2.5147 µs−1(1 − λ)
1
2 ,

as the rate law and use Q = 4 mm2/µs2, γ = 3 and upstream conditions po =

10−4 GPa, ρo = 2 gm/cc and �u = 0. These parameters were chosen to mock up a

condensed phase explosive with the ideal equation of state. These parameters give

DCJ = 8 mm/µs, and a steady-state 1-D half-reaction-zone length of 1mm (complete

reaction-zone length is 4mm.) Each of the following cases were computed with 10

points in the half reaction zone (or 40 points in the complete reaction zone.) Each

was also given the same initial conditions. A (numerically) steady CJ detonation

traveling to the right with the shock located at x = 6 mm. The numerical steady

traveling wave was computed by placing the exact ZND solution on the grid and

allowing it to come to steady state numerically. All shock capturing schemes have

some transient initial start-up errors associated with the smearing of the initial shock
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profile. Using the numerical initial condition was done for the purposes of measuring

intrinsic quantities, described later in Section 5.5.

5.4.1 Expanding channel

The first example will have the planar detonation diffract around a 45◦ corner. It

is expected that the detonation front will decelerate as a rarefaction wave is sent

through the reaction zone. This phenomenon is shown in Figure 20. Shown are two

instantaneous gray-scale plots of the density, at 1.4 µs and 2.8 µs. Also seen in the

plots are a contact discontinuity associated with a change in the temperature of the

shocked material near the corner. This indicates a lower shock pressure, and thus a

detonation front traveling below the CJ speed. Also, notice that it takes a finite time

for the front to feel the effects of the rarefaction wave. This is clearly shown in the

density plots.
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Figure 20: Density [gm/mm3] gray-scale plot at 1.4 µs and 2.8 µs, as computed by
the third-order ENO scheme.
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5.4.2 Converging channel

This example focuses on the converging dynamics of detonations. A planer-CJ det-

onation will encounter a 20◦ ramp. The detonation shock initially forms a Mach-

like reflection which slowly changes to a compressive wave. Now, the front speed is

increased above the CJ value in the Mach-stem area. Figure 21 shows the density as

a gray-scale image at times 1.75 µs and 3.5 µs. The classical Mach-reflection can be

seen at early times, while at later times, the self-similar nature of the Mach-reflection

is lost due to the reaction-zone effects.
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Figure 21: Density [gm/mm3] gray-scale plot at 1.75 µs and 3.5 µs, as computed by
the third-order ENO scheme.
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5.4.3 Circular arc

The final example combines both converging and diverging aspects of detonation

propagation. An initially planar detonation in a channel encounters a circular bend.

The bend has an inner radius of 10 mm and an outer radius of 20 mm. See Figure 22.

A rarefaction wave is initially generated at the inner bend, while a compressive wave

is generated from the outer bend. These each influence the shape of the propagating

detonation front. At roughly 1 µs after the detonation front encounters the bend, the

compressive wave and rarefaction wave collide; eventually the front becomes kinked

and forms a Mach-like reflection.
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Figure 22: Density [gm/mm3] gray-scale plot at 1.25 µs and 2.5 µs, as computed by
the third-order ENO scheme.
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5.5 Measuring intrinsic properties of the detonation shock
front

One qualitative way of comparing DSD with a DNS is to simply look at the motion of

the shock fronts generated by both solutions. Another method would be to suppose

there exists an intrinsic relation that governs a detonation shock front, and try to

measure this relation directly from a DNS.

As stated previously, one can obtain the dynamics of the detonation front by solv-

ing the compressible, reactive Euler equations with a DNS. Unfortunately, intrinsic

shock-front information like the detonation shock speed, curvature of the shock front,

etc. are not directly available from a DNS. But, notice that the fluid under goes a

very strong shock (the Mach number of the shock is about 650), for this detonation

model. Thus, the density jump at the shock is roughly a constant. So the detonation

front may be approximated as some intermediate density (2.3gm/cc was used in these

computations), between the undisturbed density (2 gm/c) and the shocked density (4

gm/cc). And for problems with quiescent upstream conditions, it is known that the

detonation shock front will pass a fixed Eulerian point at most only once. So then

it is possible to create a DNS burn table, by sweeping over the computational grid

and searching for grid points where the quantity (ρ − 2.3 gm/cc) changes sign from

one time level to the next. The first such occurrence will be when the shock passes

over that fixed Eulerian point. Then, quadratic interpolation in time can be used to

get an accurate estimate of the burn time, tDNS
b (x, y). Once we have this DNS burn

table, important quantities such as shock speed, curvature, etc. may be found. For

example, the shock speed is given by Dn = 1/|�∇tb|. The front locations are given

simply as contours of tDNS
b (x, y), and curvature of the shock front is given by (5) with

tb replacing ψ. The contours of the DNS burn times and instantaneous detonation

velocities for the three previous examples are shown in the next section.
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5.6 Comparison of DSD and DNS

All the problems considered here represent difficult tests for DSD, since the deviation

of Dn from DCJ is large. Next, results from the DNS–DSD comparison are given.

For this model, DSD theory gives a Dn(κ) relation shown in Figure 23, see [5]. DSD

theory derives a Ḋn − Dn − κ relation which can not be written as Ḋn(Dn, κ), since

Ḋn is not defined for certain regions of (Dn, κ) space, and is multivalued for others

[4]. So, a Ḋn − Dn − κ relation was chosen to approximately give the steady Dn(κ)

relation when Ḋn = 0, and the ratio of the coefficients between κ and Ḋn was chosen

to give reasonable transverse propagation speeds, similar to the full Euler equations.

The Ḋn − Dn − κ relation used here is given by:

Ḋn(Dn, κ) = −0.261D2
nκ + 2(ln(8) − ln(Dn))

Note that this Ḋn − Dn − κ relation was not derived, but rather emperically deter-

mined. A contour plot of the above relation is shown in Figure 24. Notice that the

contour Ḋn = 0 gives essentially the steady Dn −κ relation of Figure 23. Each of the

three relations will be solved using the level-set methods described in Chapters 2 and

3. Next, the detonation front dynamics generated from the DNS are compared with

those from the three intrinsic relationships.
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Figure 23: Dn(κ) law for ideal equation of state model.
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Figure 24: Ḋn − Dn − κ relation for ideal equation of state model.
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5.6.1 Expanding channel

The measuring technique described in Section 5.5 is used to calculate the front loca-

tions and Eulerian records of the detonation velocity, Dn, from the DNS for the

expanding channel problem. These records are displayed in Figure 25. The deto-

nation velocity is clearly seen to decrease by roughly 40% from the DCJ value of

8 mm/µs. Also, notice that the signaling speed is clearly evident in the simulation,

and matches the correct speed given from acoustic theory [19].

The Huygens’ solution is given in Figure 26. The dashed lines represent the fronts

from the Huygens’ solution, while the DNS fronts from Figure 25 are given as solid

lines for comparison. Notice that there is a large discrepancy in the shapes and

velocities of the fronts.

The Dn −κ solution is given in Figure 27. The detonation front slows as the front

goes around the corner. Also, since the underlying PDE is parabolic, the entire front

instantaneously senses disturbances at the front, as seen by the gray-scale plot of the

normal velocity. Although this is not physically correct, the dynamics of a Dn −κ do

predict velocity deficits, which were seen in the DNS.

The Ḋn − Dn − κ solution is given in Figure 28. Notice that the disturbances

propagate at a finite speed from the corner, as predicted in Section 3.2. Notice also

that for this problem the shapes and resulting detonation velocities compare well with

the DNS.
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Figure 25: Fronts at intervals of 0.4 µs are shown as solid lines, and the detonation
normal velocities [mm/µs] calculated from the DNS are given as the gray scale.

84



Figure 26: Fronts at intervals of 0.4 µs are shown as solid lines from the DNS, and
as dotted lines from the Huygens’ solution.
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Figure 27: The top figure shows the fronts at intervals of 0.4 µs, and detonation
velocities [mm/µs] as calculated from the level-set Dn −κ solution. Fronts are shown
as solid lines from the DNS, and as dotted lines from the Dn − κ solution in the
bottom figure.
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Figure 28: The top figure shows the fronts at intervals of 0.4 µs, and detonation
velocities [mm/µs] as calculated from the level-set Ḋn − Dn − κ solution. Fronts are
shown as solid lines from the DNS, and as dotted lines from the Ḋn−Dn−κ solution
in the bottom figure.

87



5.6.2 Converging channel

The measuring technique described in Section 5.5 is again used to calculate the front

locations and Eulerian records of the detonation velocity, Dn, from the DNS for

the converging channel problem. These records are displayed in Figure 29. The

detonation velocity is clearly seen to increase to about 9.5 mm/µs from the CJ value

of 8 mm/µs. Also, notice that the disturbance from the wedge travels at a finite speed

into the steady one-dimensional detonation region.

The Huygens’ solution is given in Figure 30. The dashed lines represent the fronts

from the Huygens’ solution, while the DNS fronts from Figure 29 are given as solid

lines for comparison. Notice that the Huygens’ solution is just a flat wave solution,

and no shape changes are predicted.

The Dn−κ solution is given in Figure 31. The detonation front increases in speed

as the front changes angle at the upper boundary to satisfy the reflection boundary

condition. Since the underlying PDE is parabolic, the entire front instantaneously

senses disturbances at the front, as seen by the gray-scale plot of the normal velocity.

Again, this is not physically correct, but the Dn − κ solution does predict a velocity

increase. Notice that the front at 3.5 µs is almost perfectly cylindrical in shape,

because the front senses both the bottom and top confinement everywhere.

The Ḋn − Dn − κ solution is given in Figure 32. Notice that the disturbances

propagate at a finite speed from the ramp. Also notice that there is initially a

kink in the wave front, associated with a shock–shock-like reflection from the ramp.

Although it is difficult to detect from the plot, this solution, unlike Whitham’s GSD,

is not self-similar. The detonation velocity is actually decreasing along the ramp wall

as a function of time. This is due to the 2(ln 8 − ln Dn) term in the Ḋn − Dn −
κ relation. Notice also that for this problem the shapes and resulting detonation

velocities compare well with the DNS.
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Figure 29: Fronts at intervals of 0.5 µs are shown as solid lines, and the detonation
normal velocities [mm/µs] calculated from the DNS are given as the gray scale.
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Figure 30: Fronts at intervals of 0.5 µs are shown as solid lines from the DNS, and
as dotted lines from the Huygens’ solution.
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Figure 31: The top figure shows the fronts at intervals of 0.5 µs, and detonation
velocities [mm/µs] as calculated from the level-set Dn −κ solution. Fronts are shown
as solid lines from the DNS, and as dotted lines from the Dn − κ solution in the
bottom figure.
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Figure 32: The top figure shows the fronts at intervals of 0.5 µs, and detonation
velocities [mm/µs] as calculated from the level-set Ḋn − Dn − κ solution. Fronts are
shown as solid lines from the DNS, and as dotted lines from the Ḋn−Dn−κ solution
in the bottom figure.
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5.6.3 Circular arc

Again the measuring technique described in Section 5.5 is used to calculate the front

locations and Eulerian records of the detonation velocity, Dn, from the DNS for the

circular arc problem. These records are displayed in Figure 33. The detonation

velocity is clearly seen to increase along the outer bend, where the detonation senses

a compressive wave, and is far below DCJ along the inner bend, where there is a

rarefaction wave, and the detonation diverges. Also, notice that the disturbance from

the edges can be seen to travel at a finite speed into the steady one-dimensional

detonation region.

The Huygens’ solution is given in Figure 34. The dashed lines represent the fronts

from the Huygens’ solution, while the DNS fronts from Figure 33 are given as solid

lines for comparison. Notice that the Huygens’ solution predicts a flat wave along the

top of the circular arc, and diffracts around the inner radius of the arc without any

decrease in speed. Notice that the general shapes and locations are quite different

than the DNS.

The Dn−κ solution is given in Figure 35. The detonation front increases in speed

along the upper boundary to satisfy the reflection boundary condition, and decreases

along the inner radius. Also, the fronts become steady in a frame rotating with the arc

very quickly, again this can be attributed to parabolic nature of the Dn − κ relation.

Although this relation does not predict the shapes very well, the fronts seem to be

on average in roughly the right locations.

The Ḋn − Dn − κ solution is given in Figure 36. Notice that the disturbances

propagate at a finite speed from the inner and outer bends. Also notice that there

is a kink that eventually forms, when the compressive wave from the outer radius

breaks and forms a shock–shock interaction. Notice also that for this problem the

shapes and resulting detonation velocities compare well with the DNS.
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Notice also that these three problems are very difficult tests, since the velocities

vary far from DCJ , and the curvatures, and time dependence are relatively large.
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Figure 33: Fronts at intervals of 0.5 µs are shown as solid lines, and the detonation
normal velocities [mm/µs] calculated from the DNS are given as the gray scale.
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Figure 34: Fronts at intervals of 0.5 µs are shown as solid lines from the DNS, and
as dotted lines from the Huygens’ solution.
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Figure 35: The top figure shows the fronts at intervals of 0.5 µs, and detonation
velocities [mm/µs] as calculated from the level-set Dn −κ solution. Fronts are shown
as solid lines from the DNS, and as dotted lines from the Dn − κ solution in the
bottom figure.
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Figure 36: The top figure shows the fronts at intervals of 0.5 µs, and detonation
velocities [mm/µs] as calculated from the level-set Ḋn − Dn − κ solution. Fronts are
shown as solid lines from the DNS, and as dotted lines from the Ḋn−Dn−κ solution
in the bottom figure.
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6 Conclusions

Here, a few conclusions are given, along with possible avenues for future research in

detonation shock dynamics and level-set methods.

First, it is clear that recently derived intrinsic relations have the ability to repro-

duce detonation phenomena seen experimentally and with direct numerical simula-

tion. These new intrinsic relations will have a direct impact on how design engineers

deal with detonation propagation. It is clear from Chapter 5 that stable detonation

dynamics can be described quite well by a Ḋn−Dn−κ relation, and cellular dynamics

can be described well by a D̈n − Ḋn − Dn − κ̇ − κ relation. Work has been done on

bringing the technology of detonation-front propagation to engineering and design

codes.

The level-set approach to solving complex topological and geometric problems

seems to be natural. This approach fits in well with the engineering applications,

which generally are quite complex.

Also, the use of high-accuracy numerical methods for studying basic detonation

problems can not be overlooked. It can serve as a tool for evaluating theoretical and

experimental work.

Finally, a few areas of proposed future research are given. Notice that there

exist several fields in mechanics which deal with front evolution. These include the

previously discussed DSD theory and Whitham’s GSD theory. Others include the

motion of flame fronts, solidification/melting fronts, J. P. Best’s theory of shock

dynamics [28], [29], and motion of hydrodynamic jumps, to name a few. Level-set

methods can be used as a tool for predicting the motion of these fronts, when resolving

them is too computationally expensive. Also, the internal boundary method and

level-set methods can be coupled to solve complex multi-dimensional, multi-phase

fluid flow.

99



It would seem worthwhile to re-examine some original experiments originally

intended for measuring Dn − κ responses [11], and measure the acceleration terms,

which clearly become important for certain problems, as seen in Chapter 5. Also,

it may be possible to derive analytically or measure experimentally intrinsic rela-

tions that will give explicit criteria for detonation failure. Again, direct numerical

simulation would be very useful to confirm such theories.
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