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Recent extensions to DSD theory and modeling argue that in addition to the total
shock-front curvature, the intrinsic front propagation law can depend on other
variables. Here we outline this recent work and present results of high-resolution
numerical simulations of 2D detonation that verify the theory on some points,
but disagree with it on others. We discuss how these results impact the analysis
of PBX 9502 shock curvature data.

I-INTRODUCTION

The benefits of using insensitive high explo-
sives (IHE) like PBX 9502 (9502) have been well
documented [1]. These desirable features come
at a price. The reaction zone is longer for IHEs,
thus making them more nonideal. In real world
applications, this translates into significant per-
formance problems, such as problems with deto-
nation wave spreading. The speed of detonation
propagation is affected over large regions. To be
realistic, calculations of performance must include
reaction zone effects.

As we will show, to capture these effects
on propagation with direct numerical simulation
(DNS) requires roughly 50 cells in the streamwise
direction of the reaction zone to get an error of no
more than 50 m/s for the detonation speed. Con-
sidering only the volume occupied by the reaction
zone, Vrz, in a 3D DNS Vrz = a · L2 · ηrz, where
L ≈ 200mm is the system dimension, ηrz ≈ 1mm
is the reaction-zone length and a is an O(1) geom-
etry factor. For 50 cells in the reaction zone, this
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estimate yields O(1010) cells at any instant just in
the reaction zone. A time of 10−4s is required for
one cell update for a modern high-order algorithm
running on a Silicon Graphics (SGI) R10K proces-
sor. With a time step of roughly ∆t = 4×10−3µs,
a physical time of 50 µs corresponds to 1.25×104

time steps. This corresponds to a single processor
computation time of

Tcpu3D = (10−4s) · (1010cells) · (1.25× 104steps) (1)

= 1.45× 105days .

With perfect parallelization over 1000 cpus, this
becomes T||3D = 145days. Because this estimate
includes only one aspect of an engineering simu-
lation and we do not achieve perfect parallel per-
formance, this is an underestimate.

In place of DNS, we have advanced using
detonation shock dynamics (DSD), a strategy in
which the effects of the reaction zone are captured
by a subscale front model [2]. Then detonation
propagation is described by an analytical expres-
sion for the normal detonation speed, Dn, that
depends on only intrinsic front related variables
such as shock curvature, κ, yielding Dn(κ). Fine
zoning to simulate the reaction zone effects is then
not required. With this approach, grid converged
solutions of detonation propagation can be ob-



FIGURE 1. 3D HUYGENS AND DSD WAVE
SPREADING CALCULATIONS FOR A 9502 SIM-
ULANT. THE DSD WAVE IS SHOWN CLEARLY
LAGGING HUYGENS. AN ALGORITHM BASED
ON LEVEL-SET METHODS WAS USED.

tained in about an hour. Displayed in Fig. 1 is
the results of such a calculation performed using
level-set implementation of DSD [3]. The problem
is 3D (due to the hole) and considers the ”point”
initiation of detonation in a shell of IHE. The off-
set between the two fronts at late time, shows the
difference between Huygens and DSD for a 9502-
like material.

In Sec. II of this paper, we briefly outline the
derivation of an extended DSD front law that in-
cludes the effects of front acceleration, DDn/Dt
and transverse flow, ∂2Dn/∂ξ

2, where ξ measures
the arclength along the shock. This extends previ-
ous work of Yao & Stewart [4], Aslam & Stewart
[5] and Short [6]. We explore the consequences
that the modifications to Dn(κ) bring. DSD is an
asymptotic theory, based on perturbations about
the reference state of an unsupported ZND det-
onation. To both verify the efficacy of the the-
ory away from Dcj and to more fully define the
phase plane in which multi-D detonations live, we
report the results of high-resolution DNS on the
steady rate stick problem in Sec. III. This com-
parison indicates that, although the base Dn(κ)
gives a reasonable leading order description, for
high-fidelity results the contributions of the ex-
tended theory are needed. Further, we find that
when the phase velocity, D0, differs between sticks
by a small amount, the difference between Dn vs
κ along the corresponding shocks is also small.
Finally, in Sec. IV we carry all of our findings
over to the analysis of 9502 curvature data, where
the measured phase velocity differences are indeed
small. We find that slightly different Dn vs κ
forms are needed along different shocks. Because
of the smallness of these differences, uncertainties
in the data at high κ, no clear indication exists in
the data on what direction the extensions should

FIGURE 2. A GRAYSCALE RENDERING OF
A 2D RATE STICK DNS. THE DETONATION
TRAVELS UPWARDS, AND r = 0 MARKS THE
PLANE OF SYMMETRY.

take. We argue that Dn(κ) can provide a good
average description.

II-EXTENDED DSD THEORY

Consider the steady, detonation rate stick
shown in Fig. 2. With a simple geometric ar-
gument, it is easily shown that the time rate of
change in the shock normal direction, D( )/Dt of
Dn is

DDn

Dt
= −(D0 sinφ)2κs , (2)

where D0 is the phase velocity, κs is the slab com-
ponent of the total curvature

κ ≡ κs + (sinφ)/r , (3)

with φ the shock angle and r the local radius to
a point on the shock. The basic tenants of DSD
theory are: (1) the shock curvature is small mea-
sured on the scale of the 1D ZND reaction zone
(i.e., κs = O(ε) with ε << 1) and (2) the flow is
quasisteady (i.e., time variations are slow). From
Eq. (2) it then follows that where φ and sinφ are
order one (i.e., O(1)), then DDn/Dt = O(κs).
Given the assumed slow time variations (say, with
a scaled time, t̃ ≡ εt), the departure of Dn from
Dcj would need to be O(1). Then the perturba-
tions κs and DDn/Dt would enter the theory at
the same order, off of a base state that is far from
CJ. This is the limit considered by Yao & Stewart
[4].



Here we do something different. We adopt
the ”traditional” DSD scalings [2], where κs =
O(ε), D = εD̃ = (Dn −Dcj)/Dcj and

φ = ε1/2φ̃ , t̃ = εt , ξ̃ = ε1/2ξ , (4)

where tilde’d variables are order one, ξ is shock ar-
clength and κs = εφ̃,ξ̃. Then DDn/Dt = O(ε2),
and time dependence enters the theory at one or-
der higher than does κs. Here we briefly outline
the steps in the formal asymptotic analysis that
leads to the higher-order propagation law

κ̄ = F(D)−ADD
Dt̄

+B
∂2D
∂ξ̄2

, (5)

where the bared variables are dimensionless. We
will study the properties of this law in some detail.

The basic physics that we study is described
by the 2D Euler equations

∂ρ

∂t
+ ∇̄ · (ρū) = 0, (6)

∂ρū

∂t
+ ∇̄ · (ρūū+ ¯̄IP ) = 0, (7)

∂ρe

∂t
+ ∇̄ · [(ρe+ P )ū] = 0, (8)

where e = E + (ū · ū)/2, ρ is density, ū is particle
velocity, P is pressure and the internal energy,
E(P, ρ, λ) is taken as the polytropic form

E(P, ρ, λ) =
P/ρ

γ − 1
− qλ, (9)

with q the heat of detonation and λ the reaction
progress variable (λ = 0 is unreacted), which is
governed by

dλ

dt
≡ R = k

√
1− λ

(
P

Pcj

)n
, (10)

where k is the rate premultiplier and n is an in-
teger. We carry forward the analysis using the
shock-based, intrinsic coordinates we’ve described
and used before (i.e., the Bertrand coordinates
given in [2], [7]). The cartesian coordinates (r, z)
are replaced by shock arclength, ξ, and the dis-
tance along the local shock normal into the reac-
tion zone, η. We further transform to (ξ, λ) as in-
dependent variables (i.e., (r, z)⇒ (ξ, η)⇒ (ξ, λ)).
Written in these variables and expressed in quasi-
conservative form, the 2D Euler equations become

[ρ(Dn − uη)] ,λ = − A
(R− L(λ))

, (11)

[
ρ(Dn − uη)2 + P

]
,λ =

B
(R− L(λ))

, (12)[
E + 1/2(Dn − uη)2 +

P

ρ

]
,λ =

C
(R− L(λ))

, (13)

[uξ] ,λ =
E

(R− L(λ))
, (14)

where

A = (Dn − uη) · (G + L(ρ)) , (15)
B = (Dn − uη) · ((uη −Dn) · G + ρH

+ L(ρ(uη −Dn)) + ρ · L(Dn)), (16)

C = (Dn − uη) · (H+ L(Dn)) +
1
ρ
L(P )

+ −L(E + 1/2(Dn − uη)2 +
P

ρ
), (17)

E = − P,ξ
ρ(1− ηκs)

+
uη
uξ
H−L(uξ), (18)

G =
ρ

(1− ηκs)
(κsuη + uξ,ξ ) , (19)

H =
uξ

(1− ηκs)
(Dn,ξ −κsuξ) , (20)

and where through O(ε2)

L( ) = ε
D

Dt̃
+ ε

Dλ(1)

Dt̃

∂

∂λ
+O(ε2+δ), (21)

with D( )/Dt̃ the scaled intrinsic, shock fixed time
derivative (called the ”dot” derivative, herein)
and δ > 0. Note, that we have used ,x to indi-
cate partial derivative with respect to x in some
places. To reiterate, Eqs. (11-14) are simply a
rewrite of the complete, 2D, time-dependent Eu-
ler equations.

In forming the perturbation expansions of the
dependent variables, we break with previous prac-
tice and take ε = D/D̃ as the expansion or order
parameter in place of κ and expand

κs = εκ(1) + ε2κ(2) + · · · . (22)

This is motivated by two things: (1) κs(D) is sin-
gle valued and (2) we anticipate this asymptotic
expansion to have a larger range of validity. The
remaining dependent variables are expanded as

Y = Y (0) + εY (1) + ε2Y (2) + · · · ,
uξ = ε3/2u

(3/2)
ξ + · · · , (23)



where Y = (ρ, uη, P )T . We now trace the basic
steps of the analysis.

At O(1), the right hand sides of Eqs. (11-14)
make no contribution (since they are O(ε)) and
we simply get the steady, unsupported ZND wave.
Substituting the O(1) solution into the right hand
side of Eqs. (11-14), expanding the left hand side
through O(ε) and integrating with respect to λ,
yields at O(ε) the linear algebraic system

¯̄M · Ȳ (1) = N̄ (1), (24)

where ¯̄M depends only on theO(1) solution. Solv-
ing for Ȳ (1), we encounter a solvability condition
arising from a singularity in ¯̄M

−1
related to the

sonic point of the base ZND problem. This condi-
tion returns the leading order eigenvalue relation
similar to what we’ve presented before [8]

−Dcjκ
(1)

k
=
(
γ + 1√

2γ

)2(
h

2h − 1

)
D̃ ≡ D̃

α
, (25)

where h ≡ 3−n. The next term in the expansion
is O(ε3/2), from which we obtain

u
(3/2)
ξ,λ = − 1

R(0)ρ(0)
P

(1)

,ξ̃
+
Dcju

(0)
η

R(0)
D̃,ξ̃ , (26)

which can be integrated to get u(3/2)
ξ . The ap-

pearance of this term represents another point of
departure from Yao & Stewart [4]; here transverse
flow is included. Going on to O(ε2), which com-
pletes the analysis presented here, yields

¯̄M · Ȳ (2) = N̄ (2). (27)

With some help from Maple we can solve Eq. (27)
and resolve the solvability condition to get

κ(2)(D̃2,
DD̃
Dt̃

,
∂2D̃
∂ξ̃2

). (28)

On combining this with κ(1), compressing the
ε dependence and introducing the dimensionless
variables

κ̄ ≡ κsDcj

k
, t̄ ≡ kt , ξ̄ ≡ k

Dcj
ξ, (29)

yields the extended intrinsic propagation law

κ̄ = F(D)−ADD
Dt̄

+B
∂2D
∂ξ̄2

(30)

where

F(D) =
1
α

(−D + f̃2D2), (31)

and the coefficients f̃2, A and B depend on γ and
n in a complex way.

Equation (30) is a rigorously derived result
for the limit of weak curvature and small depar-
ture of Dn from Dcj . To try and extend the range
over which this asymptotic expansion is valid, we
appeal to the shock-change equation [9], which in
our scaled variables is

κ̄ = −3(γ + 1)
2γ

(1 +D)−2DD
Dt̄

+
3(γ + 1)2

4γ(γ − 1)
(1 +D)−3

· R̄
(

1
6

+
(γ + 1)

3
(1 +D)2

(
∂ūη
∂λ

)
λ=0

)
, (32)

where ūη = uη/Dn and R̄ ≡ 2n(1 + D)n is
the scaled reaction rate along the shock. Equa-
tion (32) is exact along the detonation shock,
although it is incomplete and needs closure
with an independently supplied expression for
(∂ūη/∂λ)λ=0. Its appeal lies with the strong non-
linear dependence (dynamic range) that it ex-
hibits in its dependence on D, something that
our perturbation expansions lack. Our strat-
egy is to develop an expression for (∂ūη/∂λ)λ=0

by expanding uη according to Eq. (23) and all
other shock specific variables and derivatives as
we have just described. Then matching term-by-
term in powers of ε with Eq. (30) (with the ε de-
pendence reinstated), a power series is developed
for (∂ūη/∂λ)λ=0. With this series at hand, we
note that it depends linearly on (DD/Dt̄) and
(∂2D/∂ξ̄2) and suggests a simple (although non-
linear) dependence on D. Appearing in this ex-
pression are series in D that beg summation

1− 2D + 3D2 + · · · = (1 +D)−2,

−D −mD2 + · · · = −D(1 +D)m, (33)

yielding forms that are extensible beyond D =
O(ε), where m ≡ 1− 2n− f̃2. With these associ-
ations made, we have as our approximation(

∂ūη
∂λ

)
λ=0

= − (1 +D)−2

2(γ + 1)
− 4γ(γ − 1)

2n(γ + 1)3
(34)

·
(D(1 +D)m

α
+
(
A− 3(γ + 1)

2γ

)DD
Dt̄
−B∂

2D
∂ξ̄2

)
.
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This expression limits properly as D → 0 and, as
we shall see, provides a good asymptotic repre-
sentation of the solution for Dn/Dcj away from
one. Clearly, there is some arbitrariness in the
way we’ve reduced Eqs. (33) to closed form ex-
pressions.

Substituting Eq. (34) into Eq. (32), yields the
detonation propagation law we now examine

(1 +D)1−2nκ̄ = −D(1 +D)1−2n−f̃2

α
+B

∂2D
∂ξ̄2

−
(
A+

3(γ + 1)
2γ

(
(1 +D)−1−2n − 1

))DD
Dt̄

. (35)

Equation (35) leads to a parabolic equation for
the evolution of the front, which has a number
of benefits. Next we examine the properties at-
tendant to this front dynamics for some special
cases. By systematically demagnifying the scales
on which we view the solution (by making first
the length and then the time scales longer, i.e., εξ̄
and ε2t̄), we can selectively drop the dependence
of the solution on (∂2D/∂ξ̄2) and then further its
dependence on (DD/Dt̄). We define a shorthand
with which to describe these various limits: (1)
Dnxixi denotes the complete model, (2) Dndot for
the model with (∂2D/∂ξ̄2) absent and (3) DnK
for the model where κ̄ depends only on D. Next
we examine the properties attendant to this front
dynamics by considering some special cases.

The example we consider mimics 9502: q =
4mm2/µs2, γ = 3, Dcj = 8.0mm/µs and ρ0 =
2gm/cc. The parameters for Eq. (35) take the
following values for this example: Case (1) n = 0,
k = 2.5147µs−1, f̃2 = 2.6581, A = 3.821,
B = 0.2148 and Case (2) n = 2, k = 1.2936µs−1,
f̃2 = −1.3636, A = 1.3319, B = 0.2024. The
rate premultiplier, k has been adjusted so that
the 1D ZND reaction-zone length is nearly 4 mm
for both cases. We now ask, for a sequence of
steady rate sticks: (1) what are the structural
differences between the models and (2) what are
the differences in the predicted functions Dn vs κ̄
along the shocks for these models? We consider
unconfined charges, which require that the sonic
angle boundary condition be applied at the edge;
φe = arctan

√
(γ − 1)/(γ + 1) = 35.3o, for this

equation of state example.

Structurally, the DnK and Dnxixi limits lead
to parabolic evolution for the fronts and always
predict smooth shocks. Any value of φe can be ap-
plied as an edge boundary condition. The Dndot

FIGURE 3. FOR CASE n = 2, A COMPAR-
ISON OF Dn vs κ̄ ALONG A D0 = 7.0 mm/µs
SHOCK. RESULTS FROM ALL THREE MODELS
ARE SHOWN.

model generally leads to hyperbolic front dynam-
ics and so can admit discontinuities in φ along
the shock. However, the Dndot model has an up-
per limit for φe, (φe)max. For the n = 0 case,
(φe)max = 28.5o.

We compare how the models differ in their
predictions of the shocks. To do this, we com-
pare the computed Dn vs κ̄ along the shocks as
predicted by the DnK, Dndot and Dnxixi models.
These results are shown in Fig. (3). The signif-
icant observation here is how much the higher-
order models deviate from DnK and how rela-
tively close they are to one another. Finally, we
examine how small changes in the phase velocity
effectDn vs κ̄ along the corresponding shocks. We
consider only the Dnxixi model and case n = 2,
since it more nearly mimics 9502. Figure 4 shows
that in the range of phase velocities observed for
9502, the differences in Dn vs κ̄ along the shocks
is not large. If this behavior is obtained for the
physical data for 9502, it will be hard to distin-
guish between the various modeling forms. We
consider this issue in Sec. IV. Next we go on to de-
scribe the numerical simulations, the results they
yield and compare these results with those for the
models we have just described.

III-DIRECT NUMERICAL SIMULATIONS

Direct numerical simulations were carried out
for unconfined rate sticks for the model described
in Sec. II. Since the simulations were to be used to
both validate the theory and to expose new phe-
nomena, we required the simulations to be very
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FIGURE 4. FOR CASE n = 2, A COMPARI-
SON (USING THE Dnxixi MODEL) OF Dn VS κ̄
ALONG D0 = 7.5, 7.7, 7.9 mm/µs PHASE VELOC-
ITY SHOCKS. THE SMALL DIFFERENCES AR-
GUE THAT WHEN THE PHASE VELOCITY DIF-
FERENCES ARE SMALL, IT WOULD BE DIFFI-
CULT TO DISTINGUISH BETWEEN THE VARI-
OUS MODELS.

accurate. To get sufficient resolution of the reac-
tion zone, the computational mesh was localized
to the immediate vicinity of the reaction zone.
Previously we had experienced problems with ac-
curacy using standard shock capturing and inter-
face algorithms. The shocks were either exces-
sively thick (though smooth) for low order meth-
ods or noisy for higher-order methods. These ar-
tifacts produced O(1) solution errors in things we
care about, such as an increase in the reaction-
zone length and problems with reaction ignition.
Consequently, existing algorithms were modified
and new ones developed [10] so as to enhance our
ability to get higher-fidelity, grid converged solu-
tions. A code was built around these algorithms
for doing the rate stick problem.

The interior algorithm was based on the Lax-
Friedrichs scheme, principally because it doesn’t
suffer from stability problem when computing
waves that are stationary on the grid, such as is
the case here [11]. A variant of the essentially
nonoscillatory (ENO) algorithm of Osher, et al.
[12] was used. To get high order spatial accuracy
in smooth regions of the flow and smooth pro-
files near shocks, the high order spatial interpola-
tion of the flux functions was obtained by using
a convex combination of small stencil, local inter-
polants [13]. This has the property of smoothly
transitioning to a monotone low order algorithm
near shock waves. The shocks were still narrow,
with 90% of the shock rise occurring monotoni-
cally in about 2 cells. A third order Runge Kutta

FIGURE 5. FOR CASE n = 0, A GRID
CONVERGENCE STUDY FOR THE COMPUTED
VALUE OF φe AND THE PHASE VELOCITY, D0,
FOR A 48 mm ”RADIUS” 2D HE CHARGE. GOOD
CONVERGENCE IS OBTAINED FOR φe TO THE
EXACT VALUE OF 35o. ABOUT 50 GRID POINTS
ARE NEEDED IN THE REACTION ZONE TO
GET D0 GOOD TO O(50 m/s).

method was used for the time integration.

A new interface algorithm (called the Ghost
Fluid Method [10]) was developed that tracks the
HE/confinement interface. It works by extending
the calculation of fluid A across the interface into
the region of fluid B (the virtual fluid is called the
ghost fluid). This is done under the constraint of
continuous pressure and normal particle velocity
at the interface. This method goes a long way
to eliminating the smearing and overheating ar-
tifacts found at captured and volume of fluid re-
constructed interfaces. It allows for slip at the
material interface, should that be desired. The
location of the interface is then tracked with a
level-set method based on solving an extended ad-
vection equation. Under resolution, the method is
conserving of mass for stable interfaces.

To keep the calculation on a restricted spatial
domain, mesh was recycled from regions down-
stream of the reaction zone that no longer influ-
enced the reaction zone to upstream of the det-
onation shock. The time at which the detona-
tion crossed a given laboratory (z, r) point was
recorded and saved as the array of values (t, z, r),
called the burn time table

tb(z, r). (36)

By appropriately differentiating (differencing)
these data, front intrinsic quantities such as Dn



4

5

6

7

8

0 0.05 0.1 0.15 0.2 0.25 0.3

D
0

1/r

Dnxixi

DnK

4

5

6

7

8

0.01 0.02 0.03 0.04 0.05 0.06 0.07

D
0

1/r

DNS failure pt

DnK

Dnxixi

Dndot

FIGURE 6. FOR CASE n = 0, SHOWN ARE
THE DIAMETER EFFECT CURVES FOR THE
Dnxixi and DnK MODELS AND RESULTS FROM
HIGH-RESOLUTION DNS.

and κs could be calculated

n̄ =
∇̄(tb)
|∇̄(tb)|

, Dn =
1

|∇̄(tb)|
, κs = ∇̄ · n̄, (37)

where ~n is the unit vector in the shock normal
direction.

If no special care is taken in differencing
tb(z, r), quantities like Dn can possess O(1) er-
rors and higher derivatives would diverge under
grid refinement. By taking a stencil for the differ-
encing that is greater than the minimum required,
yet not so broad that spatial resolution is com-
pletely lost, grid converged values were obtained
along most of the shock. Simple centered differ-
ences were used to compute the quantities in Eq.
(37). The stencil width, w was related to the or-
der of the derivative, m being computed and the
grid spacing, ∆x by the expression

w ∝ (∆x)
1+m
2+m . (38)

Due to the w-step skipping of grid points, some
of the higher derivatives could not be calculated
within a few points of the HE charge boundary.

All of the calculations on which we report
were run in parallel over 7-cpus of an 8-cpu, SGI-
Origin. By way of example, we show how well all
this numerical technology works by examining the
convergence of the computed shock edge angle, φe,
a quantity for which we have the exact theoretical
result of φe = 35.3o for the equation of state of
this problem. Figure 5 shows that under refine-
ment, the computed φe is within 0.3o of the exact
value (the number of grid points in the reaction
zone was 8, 16, 32, 64 and 128). Also shown is

FIGURE 7. FOR CASE n = 2, SHOWN ARE
THE DIAMETER EFFECT CURVES FOR THE
Dnxixi, Dndot and DnK MODELS AND RESULTS
FROM HIGH-RESOLUTION DNS.

the computed phase velocity (in mm/µs), where
the errors are O(50 m/s) even with 50 grid points
in the reaction zone. These are the results for a
simple easy to resolve problem. The situation is
not nearly so ”favorable” for more complex rate
laws and problems.

Next we examine the predictions of the theo-
retically derived propagation laws against the nu-
merical simulation results. Most of the results we
show are from results having 128 points in the
reaction zone. Displayed in Figs. (6-7) are the
theoretically derived and DNS results (denoted as
squares, 2) for the diameter effect for cases n = 0
and n = 2, respectively. The three limits (Dnxixi,
Dndot and DnK) are shown, with the exception
that for case n = 0 Dndot isn’t shown since it can
not be made to satisfy the required edge angle
boundary condition. Case n = 2 shows detona-
tion failure (no steady solutions are found for r
less than some critical size), where case n = 0
does not. All the theoretical models follow this
trend. The DnK model is clearly inferior to the
other two, with the Dnxixi model having the best
comparison overall.

Displayed in Fig. (8) is Dn vs κ̄ along the
shock for the case n = 2. This example goes fur-
ther to point out deficiencies in the DnK model.
The more stringent comparison that the Dn vs
κ̄ plane provides argues that the Dnxixi model
provides the best overall agreement, tracking the
DNS quite well. The Dnxixi model shows even
better agreement for the case n = 0. The flatness
of the Dndot model for large κ̄ is evidence of the
singularity in κ̄ that occurs for φ just somewhat
larger than φe.

In the next section, we go on to consider how
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FIGURE 8. FOR CASE n = 2, SHOWN IS
A COMPARISON OF Dn vs κ̄ ALONG A 24 mm
SHOCK FOR THE DNS, Dnxixi, Dndot AND DnK
MODELS.

the ideas we have explored in Sec. II-III can be
used to help analyze the physical data sets for
9502 collected by Davis, et al. [14].

IV-ANALYSIS OF PBX 9502

The curvature measurements performed by
Davis, et al. [14] were designed to yield high-
quality data for the purpose of calibrating a
Dn(κ)-law for 9502. Special care was taken so
as to collect reliable data to the very edge of
the charge. This was accomplished by affixing
a mirrored glass plate (containing its own cen-
tering mark and spatial scales) to the front face
of the charge as shown in Fig. (9). To have the
physics of the wave arrival measurement be rela-
tively unambiguous, the front face of the charge
was machined at an oblique angle. Thus, oblique
shock-driven mirror turning was responsible for
deflecting the light from the optical axis of the
camera. Since the mirror extended beyond the
edge of the charge, a clean record was obtained to
the very edge of the charge. Measurements were
made for 10, 12, 18 and 50 mm diameter cylindri-
cal sticks. This wave-front shape plus the phase
velocity data was analyzed by postulating the ex-
istence of a unique Dn(κ) function, of the form

D = C1 · ((κc − κ)µ − κµc )− C2κ
ν

1 + C3κω
, (39)

where the parameters C1, C2, C3, κc, ν and ω
were constrained to be positive while 0 < µ ≤ 1.
The ansatz was that a single Dn(κ) could be made
to simultaneously fit all the data (phase velocities
and shocks) and that φe and Dcj were parameters
(same for all the shocks) also to be determined in

FIGURE 9. THE ANALYZING MIRRORED
SURFACE USED IN THE 9502 CURVATURE MEA-
SUREMENTS. THE EDGES OF THE MIRROR
SERVED TO DEFINE THE SPATIAL SCALE.

the process. Under these assumptions, Eq. (39)
could be integrated to get both a diameter-effect
curve and the family of shock shapes. These nu-
merically generated solutions were then systemat-
ically fit to the above described experimental data
set using a Levenberg-Marquardt, nonlinear least
squares algorithm.

The shocks (and corresponding phase veloc-
ities) were fit both individually and as part of a
composite data set. When fit individually, the
(z vs r) shock data was fit with a total error
of 0.5%, that was randomly distributed, and to
within 10 m/s for the phase velocities. For the
composite data set, the shock error increased to
4%, with systematic variations localized near the
charge boundary. The Dn(κ) function obtained in
this way are shown in Fig. (10). Considering the
uncertainties in the data near the charge edge, the
composite Dn(κ) appears as a good representa-
tion of the data. Note that the trend towards Dn

vs κ̄ curves of larger radius charges lying above
those of smaller ones, shown in Fig. (4) by the
Dnxixi model, is seen in the data. However, not
shown is the trend of smaller charges going out
to larger curvatures. In this instance, suspicion
should be directed at the large curvature data ob-
tained within a few percent of the charge bound-
ary.

Based on the arguments presented in Sec. II
and on the observation that the phase veloci-
ties differ by only 250 m/s, we expect that these
data can not alone be used to select between
the extended modeling forms we have discussed.
Nevertheless, the increase in error of fit for the
shocks from 0.5% to 4% suggests that improve-
ments could be made over Dn(κ). Given the good
comparison of the newer Dnxixi model (and re-
lated Dndot model) with the DNS, we tried us-
ing the above described fitting algorithm with a
Dndot form as the propagation model. We found
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SHOWN ARE THE INDIVIDUAL FITS TO THE 10,
18 AND 50 mm SHOCKS ALONG WITH A COM-
POSITE FIT TO ALL THE DATA. THE ARROWS
INDICATE AT WHAT POINT WE ARE WITHIN
1% OF THE CHARGE BOUNDARY, BEYOND
WHICH THE FITS ARE NOT SIGNIFICANT. THE
PARAMETERS FOR THE COMPOSITE FIT ARE:
Dcj = 7.818 mm/µs, C1 = 0.2643, κc = 1.276 mm−1,
µ = 0.8042, C2 = 0.1950, ν = 0.5264, C3 = 27.81,
ω = 1.279 AND φe = 43o.

that the fit residuals were not improved over those
obtained when using the DnK form. Given that
the current data access only a small part of the
phase space available to detonation propagation
(with phase velocities differing by only 250 m/s),
perhaps the addition of other data types could be
used to better defining experimentally the param-
eters in higher-order models. As has been sug-
gested, from a partial-differential equations point
of view, the function A(D) can be interpreted as
the inverse of the square of the sound speed along
the shock. Given this interpretation, equation of
state data could then be used to independently
constrain A(D). However, the theoretical models
we have developed, the DNS and the 9502 data
we have analyzed all show that A(D) decreases as
Dn increases. The sound speed does not have this
property.

What does this argue? Perhaps that the data
is not sufficiently accurate to differentiate between
various extended models. To build these higher-
order effects into the propagation law in a way
that is inconsistent with the results from DNS
and theory would be an error. Thus, given the
current state of understanding, we do not pro-
pose a high-order intrinsic propagation law for
PBX 9502 at this time. Experiments are needed
that probe parts of the phase plane for multi-
dimensional detonations that are not accessible

with rate sticks. We are currently examining ”rib”
data and nonsteady experiments, such as detona-
tion corner turning.

REFERENCES

[1.] B. Dobratz. LLNL explosives handbook: Prop-
erties of chemical explosives and explosive simu-
lants. Technical Report UCRL-52997, Lawrence
Livermore National Laboratory, 1981.

[2.] J. B. Bdzil and D. S. Stewart. Phys. Fluids A,
1:1261, 1989.

[3.] T. D. Aslam, J. B. Bdzil, and D. S. Stewart.
J. Comput. Phys., 126:390, 1996.

[4.] Jin Yao, , and D. S. Stewart. J. Fluid Mech.,
309:225, 1996.

[5.] T. D. Aslam and D. S. Stewart. Combst. The-
ory Modelling, 3:77, 1999.

[6.] Mark Short. Combst. Theory Modelling, 1:313,
1997.

[7.] J. B. Bdzil, W. Fickett, and D. S. Stewart.
Detonation shock dynamics: A new approach
to modeling multi-dimensional detonation waves.
In Ninth Symposium (Int.) on Detonation, pages
730–742, Portland, OR, 1989. Office of Naval Re-
search, OCNR 113291-7.

[8.] D. S. Stewart and J. B. Bdzil. Combustion and
Flame, 72:311, 1988.

[9.] T. D. Aslam J. B. Bdzil and D. S. Stewart.
Curved detonation fronts in solid explosives: col-
lisions and boundary interactions. In Proceedings
of the 20th International Symposium on Shock
Waves, pages 97–106, Pasadena, CA, 1995. Inter-
national Symposia on Shock Waves, World Scien-
tific Publishing.

[10.] R. P. Fedkiw, T. D. Aslam, B. Merriman, and
S. Osher. A non-oscillatory eulerian approach to
interfaces in multimaterial flows (the ghost fluid
method). J. Comput. Phys., 1999. accepted.

[11.] J. J. Quirk. Intl J. Numer. Meth. Fluids,
18:555, 1994.

[12.] C. Shu and S. Osher. J. Comput. Phys.,
77:439, 1988.

[13.] X. D. Liu and S. Osher. J. Comput. Phys.,
142:304, 1998.

[14.] R. R. Critchfield, B. W Asay, J. B. Bdzil,
W. C. Davis, E. N. Ferm, and D. J. Idar.
Synchro-ballistic recording of detonation phenom-
ena. Proc. SPIE, 3173:99, 1997.


