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1. Introduction

The use of atomistic simulation methods is becoming
increasingly common in materials science. Because
computer speeds continue to increase, simulations are
being designed that more and more closely approximate
real materials systems and processes. Using molecular
dynamics (MD), in which a classical trajectory is
integrated for a period of time, the fastest computers
available today allow one to evolve a system of 10°
atoms for a fraction of a nanosecond. This system size
and duration is more than sufficient for modeling many
material properties, especially equilibrium properties.
In about 10 more years, direct simulation of fracture
in three dimensions should be feasible for a system of
10°-10' atoms.

Besides system size and run duration, a key factor
in making a connection to reality is the accuracy of the
model for the interatomic forces. The properties
predicted by an atomistic simulation are only as good
as the quality of the underlying interatomic potential.
The focus of this chapter is the embedded-atom method
(EAM), a recently developed form of interatomic
potential that has led to considerable improvement in
the quality of predictions for metals and intermetallics.

It is important to state at the outset that EAM is a
semiempirical approach. If highly accurate, first-
principles results are desired, one can employ a
quantum-chemical or density-functional method.
However, these approaches are much more expensive,
with computational work scaling as the number of atoms
(n) to the third power or worse. Currently, simulations
with these approaches are restricted to less than 100

atoms. The virtue of the EAM is that it scales as n,
requiring only 2-5 times the work of a pair-potential
model, yet includes some many-body effects that are
important for the description of metallic systems.
Although the development of more complex, more
accurate potentials is an active area of research, there
will always be a need for fast, n-scaling potentials such
as the EAM form because some simulation studies
benefit from using the largest possible system.

The goal of this chapter is to offer an introduction to
the embedded atom method and its use in atomistic
simulations. No attempt is made to give a comprehensive
survey of EAM results for intermetallic compounds.
Rather, it is intended to be a sort of ‘users’ guide’ to
EAM, and to provide some historical and physical
perspective. Loosely, the flow is as follows: (a) present
the mathematical form of EAM and discuss its merits
for computational simulations; (b) discuss the origins
of EAM, and its physical interpretation; (c) discuss the
equivalent methods that go by different names; (d) give
a detailed description of how one goes about fitting an
EAM potential for both pure elements and intermetallic
alloys; (¢) give examples of properties that can be
calculated with EAM; and (f) discuss the limitations of
EAM for modeling intermetallic compounds.

2. The Embedded-Atom Method
2.1 Energy Expression for Pure Elements

In any n-scaling energy expression, the total energy
(E,o») of a system of n atoms can be written as a sum
over atom energies:
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n
Eo=)E; )
i

In the embedded-atom method (EAM), proposed by
Daw and Baskes (1983, 1984), E; is given by

E;=12.6(ry) + F(5)) @
J
with
pi=2p(ry) ®
J

Here r; is the scalar distance between atom i and atom
Js ¢ is the pairwise interaction between atoms, p is
another pairwise interaction leading to the ‘density’ term
p;» and F(p) is the ‘embedding function.” The sums
over neighboring atoms (/) are limited by the range of
the cutoff for ¢ and p, which is generally one to four
neighbor shells in the perfect crystal.

The computational procedure for evaluating the EAM
energy is similar to that for a pair potential. For atom
i, both ¢(r;) and p(r;) are summed over neighbors j,
and then a single evaluation of F(g) is performed.
Evaluation of the energy derivatives necessary for MD
is only slightly more complicated. As with a pair
potential, it is the radial cutoff of ¢(r) and p(r) that
causes the total computational work to scale as n.

The physical interpretation of EAM is discussed in
the next section, but some observations are made here
about the general form. It is reasonable to think of 5;
as a measure of the atomic density in the neighborhood
of atom i, which, in turn, requires that p(ry) be a
monotonically decreasing function of r;. In this sense,
EAM can be thought of as a generalization of the fixed-
volume pair potentials (Harrison, 1966), in which the
‘volume’ is now defined for each atom rather than the
whole system. This allows treatment of defects for which
the volume is ill-defined, such as free surfaces.

The key to EAM is the nonlinearity of the function
F(p). If F were purely linear, the two terms in equation
(2) could be collapsed to give a simple pair potential. A
nonlinear F(p) thus provides a many-body contribution
to the energy. Because p; depends only on scalar
distances to neighboring atoms, the many-body term
has no angular dependence. Nonetheless, this spherically
symmetric, many-body interaction is quite important.
For example, with a simple pair potential, the vacancy
formation energy is formally equivalent to the atomic
cohesive energy, and the Cauchy pressure (Cj,—C,,)
is zero. Both of these conditions are non-physical
for transition metals, and are remedied in the EAM
expression.

2.2 Physical Interpretation of EAM

The embedded atom method has its roots in density-
functional theory (DFT). The basis of DFT is that one
can prove that the energy of a system of atoms is given
exactly by a functional of its electronic density
(Hohenberg and Kohn, 1964). Although the exact form
of this functional may never be known, approximations
to it can be derived, and have been employed with
considerable success in studying the electronic structure
of molecules and crystals. In a similar fashion, one can
prove that the energy change associated with placing
(embedding) an atom into a host system of atoms is a
functional of the electronic density of the host system
before the new atom is embedded (Stott and Zaremba,
1980; Norskov and Lang, 1980). If a good approximation
to this embedding functional exists, one can envision
constructing an approximate energy expression by
viewing an atom in a solid as being embedded in the
host density due to all the other atoms. The host density
can be approximated by the superposition of atomic-
charge distributions for each host atom. To zeroth
order, the embedding energy can be equated to the
energy of embedding an atom in a homogeneous
electron gas, whose density (5) matches the host
density at the position of the embedded atom,
augmented by the classical electrostatic interaction with
the atoms in the host system. The embedding energy
for the homogeneous electron gas can be calculated
from first principles (Puska et al., 1981). Computing
p from a weighted average of the host density over the
spatial extent of the embedded atom improves the
description by accounting for the local inhomogeneity
of the host density. The classical electrostatic interaction
reduces to a pairwise sum if a frozen atomic charge
density is assumed for each host atom. This approach,
termed the quasiatom method (Stott and Zaremba,
1980) or effective-medium theory (Norskov and
Lang, 1980), provided the conceptual platform for
the development of EAM and EAM-like methods.
Norskov (1982) used this approach to calculate the
energy of hydrogen and helium impurities in various
metals, obtaining good agreement with experimental
trends.

Building on this, Daw and Baskes (1983) proposed
two modifications: (1) replace the first-principles
estimates of the terms in the energy expression with
easily parameterizable forms for the electrostatic
interaction (¢(r)) and the embedding energy (F(p));
and (2) compute the embedding and electrostatic energy
for each atom in the solid, summing them to obtain the
total energy. Implicit in this treatment is a double
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counting, owing to the fact that each atom acts as a host
for, and is also hosted by, each other atom. (Manninen
(1986) has since shown that this double counting error
drops out if p(r) is taken to be a transform of the actual
density function.) Using the electron density from an
atomic Hartree-Fock calculation (Clementi and Roetti,
1974) to define p(r), the shapes for ¢(r) and F(p) were
then optimized by fitting to experimental properties,
resulting in a powerful semi-empirical approach.

More recently, the connection between EAM and
local-density theory has been explored further, putting
EAM on firmer theoretical footing, and spawning
related, advanced potential forms; see, for example,
Manninen (1986), Jacobsen et al. (1987), Kress and
DePristo (1987, 1988), and Daw (1989).

To summarize, the physical interpretation of EAM
from the viewpoint of effective-medium theory is as
follows: p(r) is essentially the electronic density as a
function of distance from the nucleus of the atom; 5;,
which has been summed over neighbors of atom i,
corresponds to the density of the host system with atom
i removed; F(5) is the quantum-mechanical energy of
embedding atom i into a homogeneous electron gas of
density p; and ¢(r;) is the classical electrostatic
interaction between atoms i and j (and other correction
terms).

There is also a simpler way to view the EAM form
that is often useful. The many-body effect of F(p) is
that, as an atom makes more bonds, each new bond
is weaker than the previous one; making a new bond
increases the total bonding energy, but decreases the
average energy per bond. This is consistent with
traditional chemical bonding concepts. In this view, po(r)
plays the role of a bond sensor, which should decrease
monotonically with r, and p; offers a measure of the
total bond order. The desired inverse correlation
between bond order and bond length arises naturally
because the bond order of an atom can increase by
making either more bonds or shorter bonds. The
weakening of successive bonds will occur if F(p) has a
positive curvature (d2F/dp?>>0). The first-principles
determination of the energy for embedding an atom in
a homogeneous electron gas (Puska et al., 1981) indeed
shows a positive curvature for all atoms that can make
chemical bonds (i.e. all but the noble gas atoms,
which show no curvature). Semiempirically fitted EAM
potentials also show positive curvature in F(p), as can
be seen in Figure 1.

For a solid at equilibrium, the force to expand (or
contract) due to the embedding function is exactly
balanced by the force to contract (or expand) due to
the pairwise interactions. At a defect, this balance is

disrupted, leading to displacements as the atoms move
to seek a new balance. The positive curvature of F plays
a key role in this process, by defining the optimum
tradeoff between the number of bonds and the
lengths of those bonds. This leads to physically
reasonable relaxations, as discussed for free surfaces in
Section 5.1. While the curvature of F has physical
significance in the many-body nature of the EAM
potential, the slope of F does not. This is because
changing the slope of F is equivalent to changing the
pair potential, as will be shown in the next section (see
equation (8)).

It is interesting to note that if one derives the elastic
constants for the EAM energy expression (Daw and
Baskes, 1984), the Cauchy pressure for a cubic crystal
is found to depend directly on the curvature of F:
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Here Q is the atomic volume, x; is the Cartesian
projection of r;, and one unique atom has been
assumed for simplicity. Thus, for EAM potentials that
maintain the chemically meaningful property that
successive bonds are weaker, the Cauchy pressure
cannot be negative. This implies that the negative
Cauchy pressure exhibited by some transition metals
(Ir, Rh) arises from directional bonding effects not
included in EAM. A good description of these
systems would require a potential with angular
interactions.

2.3 EAM Energy Expression for Alloys

For an ordered alloy, or any system with more than one
type of atom, the EAM energy expression in equation
(2) is rewritten as

E;=4)1,ry) + F(B) ®)
J
with

pi=2o(ry) ©)
J

Note that ¢ now depends on the type of atom i (7} and
atom j () and the terms in the j-sum for p; each
depend on the type of neighbor atom j. Thus, for a
binary alloy with atom types A and B, the complete
EAM energy expression requires definitions for ¢,(7),
®as(), da(r), PA(P), p(r), FA(P), and Fy(P).
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In fitting an alloy potential of the form in equation
(6), one can proceed in two different ways. One
approach is to perform a global optimization of all these
functions to find the best match (e.g. in a least-squares
sense) to a set of experimental properties involving pure
A, pure B, and the AB alloy(s). The disadvantage of
this approach is that the calculated properties of pure
A (or pure B) generally will not be as accurate as when
a potential for pure element A is fitted alone. On the
other hand, the increased flexibility in the parameter
space can result in a better overall description of the
alloy system. This approach has been used with
considerable success by Foiles et al. (1986), who
optimized not just two but six different f.c.c. metals
and all their binary alloys in a single global optimization.
For each binary system (AB), the reference data set
consisted of the heat of solution at infinite dilution for
A in B and for B in A. This type of procedure could
also employ data on ternary alloys, if available from
either experiment or first-principles calculations (see
Section 4.2).

The other approach is to begin by fitting pure A and
pure B, and then constructing the cross-potential
¢ an(7) to obtain the best fit to alloy properties. In this
method, one can also consider two transformations
under which equation (2) is invariant and equation (5)
is not. The first of these corresponds to scaling the
density,

PA()=52pA(") (7a)
Fi(p) =F,(p/ss) (7b)

where the prime indicates the transformed function. In
the other transformation, a linear term is added to

F(p),
FA(@)=FA(P)+gaP (8a)
BAA() = Daa(r) — 284 PA(T) (8b)

Because these transformations change the alloy energy
without affecting the pure-element energies, they can
(and should) be used in the fitting procedure to improve
the quality of the alloy potential. Note that the effect
of transformations (7) and (8) depends on the order in
which they are applied. In the work described below,
the linear transformation in equation (8) is applied
before the scaling in equation (7). To fit an alloy system
with N components (A, B, . . ., X), one determines
N(N-1)/2 cross-potentials (¢5g(r), dac(r),. . .), and
simultaneously optimizes the 2N—1 transformation
parameters (s, Sc, . . ., Sx, and g,, &g, - - -, &x). The

parameter s, is excluded because only the relative
scaling of the p functions affects the alloy energy.

An alternative, simpler approach has been presented
by Johnson (1989). Choosing the proper definition for
$an(r) in terms of ¢,A(r), dpa(), pA(r) and py(r), the AB
alloy energy becomes invariant to the transformation
in equation (8). In this approach, fitting an alloy
potential requires only that the N-1 p-scaling
parameters be optimized.

The EAM energy expression for an alloy is identical
whether the system is an ordered intermetallic or a
random solid solution. The preference for one or the
other comes out of the particular definitions for ¢, p,
and F, especially the magnitude of (¢, + dpp)/2
relative to ¢,p and that of p, relative to pg.

3. Closely Related Methods

In addition to the effective-medium-based methods
(Jacobsen et al., 1987; Stave et al., 1990) discussed in
Section 2.2, there are also a few other interatomic
potential methods that bear a close resemblance to EAM
(Finnis and Sinclair, 1984; Ercolessi, 1983; Ercolessi et
al., 1983, 1986; Tomédnek and Bennemann, 1985;
Rosato et al., 1989). Although these potentials were
derived from different considerations, the resulting
forms are virtually identical to equation (2) for
pure elements. It is thus instructive to discuss their
origins.

3.1 Second Moment Approximation

The ‘N-body potentials’ developed by Finnis and
Sinclair (1984), and the potentials reported by Tomanek
and Bennemann (1985), and Rosato et al. (1989),
correspond to a second moment approximation (SMA)
to tight-binding theory. In tight binding theory
(Harrison, 1980; Pettifor et al., 1989), atom-based
orbitals are assumed to interact via a simple one-electron
Hamiltonian. Diagonalizing the Hamiltonian matrix for
the system leads to a set of orbital energy levels which
can be populated with electrons and summed to obtain
the total bonding energy. Expressing the distribution
of these energy levels as a density of states (DOS), the
bonding energy can be written as

Ep
Eyona= S en(e)de )]

where n(e) is the DOS and Eg is the Fermi level.
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If, rather than determining the exact DOS for the
system, one approximates the DOS shape from its low-
order moments, a drastic reduction in computational
work results. This is because it is relatively easy to
compute the Hamiltonian moments atom by atom. For
example, assuming an s basis (one s orbital per atom),
the second moment of the DOS on atom i is given by

pai= Gl HIxy = 2 OalHIx) <l HIxy = 2% (10)
j J

Here x; is the basis function on atom i, hy= (x/|H|x;,
and the summation arises from insertion of a complete
set of basis functions between the Hamiltonians.

Choosing any basic shape for the DOS, such as a
Gaussian or a rectangle, it is easy to show that the width
of the DOS is proportional to (u,;)!/2. Ignoring higher
moments and assuming u,;=0, evaluation of the
bonding energy from equation (9) gives

Ebond,i = —A(I"Zi)l/z (1)

where A is a positive constant that depends on the
chosen DOS shape and the fractional electron
occupation.

To obtain an interatomic potential, the approximate
tight-binding bond energy should be augmented by a
pairwise sum to account for core-core interactions and
to correct for double counting. Combining equations
(10) and (11), the s-basis SMA energy of atom i thus
becomes

E=$ 300 - A(ZHyrp) (12)
J J

where we have noted that A;; is simply a function of r;.
The correspondence to the EAM expression in equation
(2) is now obvious, with

p()=hYr) (13a)

and

F(p)= - A(p)'? (13b)

In this derivation, the embedding function takes on
a particular form, namely a negative square root. This
has a positive second derivative for all 5, consistent
with the concept of bond counting discussed in Section
2.2, as expected from its quantum mechanical
derivation.

Because this F(p) has negative slope for all values of
P, it provides the cohesive force, and must be balanced
by a repulsive pair potential. However, the invariance

of the EAM energy to the transformations in equations
(7) and (8) means that this energy partitioning is not
unique.

Traditionally, the SMA has been applied to both f.c.c.
and b.c.c. metals, while EAM has been applied
predominantly to f.c.c. There is no particular reason
to view either approach as better suited for either crystal
type, although the restriction that F(5) be a negative
square root presumably makes the SMA less flexible.
For alloy systems, there is actually a slight formal
difference between EAM and SMA arising from the
difference in their physical origins. In EAM, the terms
in the density sum for atom i in equation (6) depend
on the atom type of neighbor j but not on the type of
atom i. This is because the fixed density on atom j is
independent of atom i. In the corresponding SMA
expression (equation (10)), the terms have a different
meaning: they are the squares of matrix elements
between atom i and atom j, and so depend on the type
of both atom i and atom j. In constructing a binary-
alloy potential, SMA thus requires one more function
(h, ,,l(r)) than EAM.

An appealing aspect of this second-moment view of
EAM is that it offers a natural pathway to more accurate
potentials. By extending the energy expression to include
higher moments, either via the recursion method
(Haydock et al., 1972, 1975) or other approaches
(Brown and Carlsson, 1985), the intricacies of chemical
bonding are more faithfully represented. Higher
moments are simply formed from Hamiltonian products
that correspond to paths with more atom-to-atom
jumps. Using p and d basis functions (rather than just
s) puts explicit directionality into the energy.
Investigations along these lines are ongoing in a number
of research groups (see, e.g., Carlsson, 1989; Carlson
et al., 1990; Pettifor, 1989), with the goal of developing
the next generation of interatomic potentials that can
treat not just metals, but directionally bonded materials
as well.

Another bonus of the moment view is the relatively
simple physical interpretation. For example, while
the second moment counts bonds to immediate
neighbors, the improvement contained in the fourth
moment can be similarly understood. The fourth
moment is a sum over paths with four links. An
important part of this sum is the set of paths that go
from atom i out to neighbor j, from there to neighbor
k, then retracing back through atom j to atom i. This
type of path allows the system to sense the number of
bonds atom j makes to atoms other than i, offering a
measure of how much bonding is available to offer to
atom i.
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This second-moment method is sometimes referred
to in the literature as a ‘tight binding’ formalism, with
the discussion of the second moment truncation left to
the calculational details section. Given the significant
difference between SMA and full tight binding, in terms
of both accuracy and computational difficulty, adoption
of a clearer terminology would be helpful.

3.2 Glue Model

Ercolessi and co-workers (Ercolessi, 1983; Garofalo,
1984; Ercolessi ef al., 1986) developed the ‘glue model,’
in which a many-body force (the ‘glue’) augments a pair
potential to coax the metal towards the correct
coordination number. Their motivation was to obtain
a good description of Au, which has a strong propensity
toward surface reconstructions that maximize the
coordination of the surface-layer atoms. The form of
the glue model is exactly the same as in equation (2).
Taking a purely empirical approach, the functional
shapes were fitted to a host of properties, including the
lattice constant, cohesive energy, surface energy, bulk
modulus, X-point transverse phonon frequency,
vacancy-formation energy, Cauchy pressure, melting
temperature, latent heat of fusion, and the thermal
expansion coefficient. This is a much larger set of
properties than is usually employed in an EAM potential
fit. The result is a potential that gives an impressive
description of various Au surface reconstructions
(Ercolessi et al., 1986) with only a first-nearest-neighbor
cutoff distance. The embedding function has a negative
curvature for small 5 and a minimum (and positive
curvature) at the equilibrium 5.

Because EAM is a central potential, third-neighbor
interactions are required to distinguish f.c.c. and h.c.p.
crystal structures, just as for a pair potential. This first-
neighbor glue model for Au thus cannot distinguish
f.c.c. from h.c.p., but this disadvantage is offset by the
fact that the first-neighbor cutoff makes the energy and
derivative evaluation very fast.

4. EAM Potential for the Ni-Al-B System

Having discussed the form of the EAM, we now show
by example how one proceeds in fitting a potential.
The approach used by most groups, and the one
demonstrated here, is to seek the best possible fit to
experimental data, relying on the physical underpinnings
of equation (2) to give a potential that is reasonable in
other parts of configuration space. This empirical

approach, while perhaps less satisfying than attempting
to derive functional shapes from first principles, has
worked quite well and has contributed to the widespread
use of EAM for metal and alloy simulations.

The Ni-Al-B potential described in this section
(Voter and Chen, 1987; Voter et al., 1989) was
constructed to study Ni, Al, and L1, Ni;Al grain
boundaries with and without boron (Chen et al., 1989,
1990). For this reason, little effort was put into making
the Ni-Al potential suitable for stoichiometries other
than pure Ni, pure Al, and Ni;Al, although it has since
been used with some success for B2-phase NiAl
(Moncevicz et al., 1991; Clapp et al., 1989). The
description of pure B is expected to be inadequate, as
real B exhibits significant directionality in its bonding,
but EAM should give a reasonable description of B
embedded in a metallic substrate at low concentrations.

EAM potentials for the Ni-Al system have also
been constructed by Foiles and Daw (1987), Vitek
et al. (1990), Brown and Johnson (1991), and Rao
et al. (1991).

4.1 Fitting the Pure Elements

The pairwise interaction is taken to be a Morse potential,
&(r)=Dy{l —explay(r—R\I1P-Dy  (14)

where the three parameters, Dy, Ry, and oy, define
the depth and position of the minimum, and a measure
of the curvature at the minimum, respectively. The
density function is taken as the density of a hydrogenic
4s orbital

p(r)=rb(e=5 +2%~2n) 15)

where § is an adjustable parameter. Because rfe 4
turns over at short r, the second term has been added
to maintain the monotonically decreasing character of
p(r) to shorter r (r values inside the maximum are
forbidden in the simulations). To ensure that the
interatomic potential and its first derivatives are
continuous, both ¢(r) and p(r) are smoothly cut off at
r=rg, by using

\ _h n Teut . r\" |/ dh
smooth(r)— - (rcut)+ ; - ;c: E; F=Tcy,
16)

where h(r)=¢(r) or p(r) and m=20; r,, is used as a
fitting parameter. Following Foiles (1985a), F(p) is
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defined by requiring that the energy of the f.c.c. crystal
vs. lattice constant is given by the universal energy form
of Rose et al. (1984),

E(a*)= — Ecnf(@*) a7
where
f@)=(1+a*e 18)

Here E_,, is the crystal cohesive energy (per atom) and
a is a reduced lattice constant defined by

a* = (@/ay— 1)/ (E,q/9BR)'? (19)

where a is the lattice constant, g, is the equilibrium
lattice constant, B is the bulk modulus, and Q is the
equilibrium atomic volume. Thus, knowing Ey, 4,
and B, the embedding function is defined by requiring
that the crystal energy from equation (2) matches Ey
from equation (17) for all values of a*. The crystal
energy needs to be zero when the crystal nearest-
neighbor distance reaches r,, (i.e. when a* = a%,). This
is accomplished by modifying the universal function in
a manner suggested by Foiles (1985b),

fuuilan L1072 e )

1-¢

where e=f[a*,]. To make Ey go to zero at exactly ag,
requires shifting e slightly. Defining g by

e=f(q) @n

we can solve iteratively for g using

Gnsr = 3o+ 11— fnoa(@) 120t 2)

with g, =a?, as a starting guess.

Having defined the functional forms, we now describe
the fitting procedure. The five parameters defining ¢(r)
and p(r) (Dy, Rm» oms B, and ry,) are optimized by
minimizing the root-mean-square deviation (Xms)
between the calculated and reference properties of the
material. Because F(p) is redefined for each choice of
the parameters, the potential always gives perfect
agreement with the experimental values of ay, E o, and
B. For Ni and Al, the reference properties are the three
cubic elastic constants (Cy;, C),, and Cyy), the vacancy-
formation energy (Ef,.), and the bond length (R,) and
bond strength (D,) of the diatomic molecule. In
addition, the h.c.p. and b.c.c. crystal structures are

required to be less stable than f.c.c. Because the
function being minimized contains discontinuities (such
as when the wrong crystal structure becomes more
stable) and many local minima, the parameter space is
searched using the very robust (albeit slow) simplex
algorithm (Nelder and Mead, 1965). The best fits for
Ni and Al are shown in Table 1, the resulting parameter
sets are shown in Table 2, and the functional shapes
are displayed in Figure 1. The fit for Ni is excellent, with
Xems = 0.75%, while the fit for Al is not quite as good,
with xm.=3.85%.

Owing to the complex structure of the native
rhombohedral phase of boron, we simplify the fitting
procedure by treating B as an f.c.c. material. Because
experimental measurements are not available for f.c.c.
B, we turn to high quality electronic structure
calculations. The linearized muffin-tin orbital (LMTO)
approach (Andersen, 1975; Skriver, 1984), based on the
local density approximation, can be used to compute
the binding energy of a crystal as a function of lattice
constant. From a set of these calculations, the
equilibrium (7= 0) values for @, E,,, and B can be
predicted to good accuracy, as demonstrated for NiAl
and NijAl (Chen et al., 1990). (Band structure
calculations are also described in Chapter 6 by Singh
in this volume.) The f.c.c. structure is used as the
‘native’ form, from which F(p) is constructed. LMTO
results on the b.c.c. structure and f.c.c. with one atom
(out of four) missing per unit cell (‘f.c.c.(3/4)’) are used
to provide data for the least-squares search. The results
of this fit are included in Table 1.

4.2 Fitting the Cross Potentials

The cross potentials are fitted as described in Section
2.2. The pair potentials (¢x;-ai(r); ¢nip(r), Dar-s(7)) are
each defined as a Morse function with a cutoff. The
Ni-Al interaction is found first, by optimizing the four
Morse parameters and the transformation parameters
(Sa1» &ni» and g, in a fit to a variety of experimental
data on L1, Ni;Al and B2 NiAl. For Ni;Al these
quantities are dg, Ey,, E,qc, the elastic constants, the
(111) and (1 00) antiphase-boundary (APB) energies
and the superlattice intrinsic stacking fault (SISF)
energy. For B2 NiAl, only g, and E,;, were included.
The results of this fit are shown in Table 3. Next,
the Ni-B cross-potential is found by optimizing the
Morse parameters for ¢y;_p and the transformation
parameters s and gg. The set of reference data for
these are once again obtained exclusively from LMTO,
using the hypothetical L1, Ni;B and B2 NiB structures.
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Table 1. Properties used in fit to f.c.c. Ni, Al, and B. Calculated values of aE;,
and B match experiment exactly owing to the way F(p) is determined. The LMTO
results are from Chen et al. (1990). The experimental data on the diatomic boron
molecule are from Huber and Hertzberg (1979). The other experimental references
can be found in Voter and Chen (1987)

Ni Al B
Structure Property Expt. Calc. Expt. Calc. Expt. Calc.
f.c.c. a, (A) 3.52 4.05 2.91
E,, (V) 4.45 3.36 5.33
B(102 erg cm™?) 1.81 0.79 2.02
C,(10%ergem=%) 247 2.44 1.14 107
C,, (102 ergecm=3) 1.47 1.49 0.619 0.652
C,(10%ergem=%) 125 126  0.316 0.322
AEf (eV) 1.60 1.60 075 0.73
D, (eV) 1.95 1.94 1.60 1.54 1.59 1.62
R.(A) 22 223 2.47 245 3.08 3.27
b.c.c. a,(A) 2.34 233
E . (eV) 495 5.31
B(10erg cm™?) 211 2.12
f.c.c.(3/4) a,(A) 2.78 2.65
E . (eV) 5.78 5.66
Xems (V0) 0.75 3.85 4.12

Fni

bedededea a4 2l 2 0 2l
0.2 04 0.6 0.8
P(A-3)

Figure 1. The functions comprising the Ni;Al potential. The p,, curve has been scaled by s,,. Where two curves are displayed,
the dotted one represents the function after the transformations of equations (7) and (8) have been applied

Table 2. Potential parameters for f.c.c. Ni, Al, and B, Finally, the Morse parameters for ¢,, g are optimized

optimized from data in Table 1 to find the Al-B cross-potential. For ¢,,_p, fixing 7,
Ni Al B at 3.0 A and using D,=1.60¢€V helps to control the

Dy (V) 1.5335 3.7760 0.7182 _fit. The results of the Ni-B aqd Al-B fits are §h?wn

Ry (A) 2.2053 2.1176 1.6517 in Table 4 and are seen to be quite good. The optimized

ay (A7) 1.7728 1.4859 3.1915 parameters are in Table 5.

B(AH 3.6408  3.3232  2.0108 An alternative procedure, which we have not tried,

Tow (R) 4.7895 5.5550  4.3716

would be to fit all the cross-pair-potentials and
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Table 3. Properties used to fit the Ni-Al cross-potential.
References for the experimental data can be found in Voter
and Chen (1987)

Properties Expt. Calc.
Ni;Al g, (A) 3.567 3.573
E_, (V) 4.57 4.59
C,, (102 ergcm™3) 2.30 2.46
C,, (10% ergcm™3) 1.50 1.37
C, (102 ergcm™?) 1.31 1.23
AE!, (eV) 1.6+0.2 1.64(Ni)
1.87(AD)
SISF(111) (mJ m~?) 1045 13
APB(100) (mJ m~?) 140+ 14 83
APB(111) (mJm~?%) 180+30 142
B2 NiAl a, (A) 2.88 2.87
E_ (V) 4.51 4.38

Table 4. Properties used to fit the Ni-B and Al-B cross-
potentials. LMTO results are from Chen et al. (1990)

Properties LMTO Calc.
Ni,B (L1, a, (A) 3.39 3.39
E., V) 4.80 4.80
B (102 erg cm™3) 2.56 2.56
NiB (B2) a, (A) 2.55 2.58
E,, V) 5.30 5.30
Al (L1y) a, (A) 3.805 3.909
E,, (V) 3.72 3.92
B (102 erg cm™3) 9.27 9.22
AlB (B2) a, (A) 2.96 0.96
E,, (eV) 424 4.27

transformation parameters in a single optimization. This
would put the Ni-B and Al-B cross-potentials on an
equal footing with the Ni-Al cross-potential.

It is worth noting that constructing high-quality Ni-
B and Al-B cross-potentials would have been virtually
impossible without the use of electronic-structure
results. Augmenting experimental data with theoretical
calculations on hypothetical crystal structures is gaining
popularity as a powerful tool in fitting potentials.

Table 5. Optimized parameters for the Ni-Al, Ni-B, and Al-B
cross-potentials

¢Ni-Al ¢Ni—B ¢AI-B
Dy, (eV) 3.0322  0.28223 0.12949
Ry (A) 2.08906  2.3149 2.8876
ay A7 1.6277  2.4852 1.3904
Fow (A) 5.4639  2.8181 3.0000

Ni Al B

1.0 0.61723  3.4936x 10~
g, (eV AY) 6.51451 —0.22050 —0.078785

5. Example Calculations

Atomistic simulations can be applied to a wide range
of defects and dynamical processes, limited only by the
computer capacity, as discussed in Section 1. The
properties that can be studied are those that derive from
knowing the system energy as a function of atomic
configuration, such as point and planar defect
structures, defect energies, free-energy differences,
elastic properties, stress distributions, diffusion
constants, phonon spectra, and phase transitions.

As discussed in Section 2.2, because of the physical
underpinnings of the EAM, it gives a reasonable
description of defect structures and energies. The goal
of this section is to give some sense of what can be done
with atomistic simulations using EAM potentials, by
discussing a few examples.

5.1 Free Surfaces

Perhaps the best illustration of the predictive power of
EAM comes from an examination of the relaxations and
reconstructions that occur at free surfaces. At a metal
surface, the first layer of atoms generally contracts
toward the second layer relative to the bulk spacing.
Using EAM concepts, this is easy to understand. The
atoms at the surface have fewer bonds than in the bulk,
and consequently move toward the bulk to resaturate
their bonding. However, the atoms in the second layer
(or a deeper layer, depending on the geometry: of the
crystal face) now see more density (bonding) than the
bulk value. To correct this, the spacing between layer
two and layer three increases. This effect continues,
resulting in oscillatory relaxations that persist for many
layers into the bulk. EAM provides not only an
understanding of this phenomenon, but can offer
relatively accurate predictions of the interlayer spacings
(Chen et al., 1986, 1987b). Additional features arise
when the surface is that of an ordered intermetallic. The
interested reader is referred to Chapter 25 by Farkas
in this volume, which treats this topic in detail and
includes results using the Ni-Al potential presented in
Section 4.

5.2 Boron Interstitial in Ni;Al at Bulk and
Grain-Boundary Sites

Interest in boron in Ni;Al stems from the observation
that very small concentrations of B can produce ductility
in polycrystalline Ni;Al, which is otherwise extremely
brittle (Aoki and Izumi, 1979). It is still an unresolved
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question whether the primary effect of the boron is to
strengthen the grain boundaries or improve the plasticity
at the boundaries.

Using molecular-statics calculations with EAM
potentials, it is possible to address questions about the
relative stabilities and structures of possible boron sites.
Molecular statics refers to the procedure of finding the
atomic geometry that corresponds to the lowest energy
for a given defect specification. These energies and
structures thus correspond to the classical zero-
temperature system, representing a good approximation
at low to moderate temperatures. If accurate results are
desired for a specific nonzero temperature, Metropolis
Monte Carlo (Metropolis et al., 1953) or molecular
dynamics can be employed to study the appropriate
constant-temperature ensemble.

Considering bulk interstitial boron, there are three
possible sites: a tetrahedral site and two octahedral sites.
In the tetrahedral site, the nearest neighbors of the B
are one Al and three Ni atoms (3Ni-1Al), while the two
octahedral sites correspond to 6Ni and 4Ni-2Al
neighbor patterns. To study this system, a 256-atom
block of 4 x4 x4 unit cells of L1, Ni;Al with periodic
boundary conditions was employed. Placing the single
B atom in one of the candidate sites, the energy was
determined by relaxing both the system dimensions and
the individual atom positions of all 257 atoms. The 6Ni
octahedral site is found to be the most stable, with an
energy of —4.59 eV (relative to an isolated B atom and
an unperturbed Ni,Al crystal) and a formation volume
of 15.8 A =1.4Q. The 4Ni-2Al octahedral site is at
—3.65eV and the 3Ni-1Al tetrahedral site is at
—2.99eV. These results are consistent with the
conclusion from channeling/nuclear-reaction analysis
that the B resides in one of the two octahedral sites
(Bohn ef al., 1987).

It is interesting to examine the relative contributions
of the different relaxations to the final energy. With the
B placed on the symmetric position in the 6Ni octahedral
site, before any relaxation, the energy is positive
(+3.35 eV). Relaxing only the first shell of six Ni atoms
lowers the energy by 7.3 eV, while all further relaxations
combined account for only 0.63 eV. The majority of this
0.63 eV comes from the relaxation of the third-neighbor
shell (0.48 eV). The first shell of six Ni atoms relaxes
outward by 0.28A , the second shell of eight Al atoms
relaxes inward by 0.001 A, and the third shell of 24 Ni
atoms relaxes outward by 0.07 A. After all 257 atom
positions are relaxed individually, scaling the system size
(i.e. the volume relaxation) lowers the energy by only
0.05eV, and re-relaxing the atom positions has no
noticeable effect on the energy. Thus, a very good

estimate of the interstitial formation energies can be
obtained by simply relaxing a few neighbor shells.

Molecular statics can also be used to investigate the
tendency for B to segregate to a grain boundary (GB).
Examining various possible interstitial sites at the GB
leads to energies as low as — 6.9 eV. (Chen et al., 1990),
consistent with the experimental observation that boron
segregates to the grain boundaries (White et al., 1985).
This energy lowering relative to the bulk interstitial
occurs because the defective nature of the GB offers
sites with less crowding by the neighboring atoms.
In addition, it is found that B at the GB reduces the
Ni antisite defect energy, causing a co-segregation
effect. In Ni-rich polycrystals, the excess Ni favors
replacing the Al at a boron-rich GB over replacing Al
in the bulk (Chen e al., 1990). See also the chapter by
Takasugi.

5.3 Grain Boundary Cohesion in Ni,Al

To study grain-boundary strength, there are (at least)
three approaches that can be used. The simplest is to
examine the Griffith cohesive energy, defined as the
energy required per unit area to cleave a brittle material
without plastic deformation (Griffith, 1920). This is
easily computed from the results of molecular-statics
simulations on the GB of interest and the free surfaces
that would result from perfect cleavage along the
boundary. Using the EAM potential presented above,
this type of simulation showed that the grain-boundary
cohesion in Ni;Al is comparable to that for pure Ni,
indicating that the brittleness of polycrystalline Ni;Al
does not arise from an intrinsic GB weakness (Chen et
al., 1987a; Chen et al., 1989).

A more sophisticated approach, which allows plastic
deformation in a very limited, local sense, is the stepwise
relaxation method. Using clamps in the model, the
crystal is strained normal to the GB in a stepwise
fashion, using molecular statics to reminimize the energy
after each step. In addition to providing the GB cohesive
energy, which may or may not be the same as the
Griffith value, this method also allows calculation of
the stress at each step, so that a stress—strain curve can
be constructed. Although the sequence of configurations
does not correspond to any physically realizable process,
the procedure offers a well-defined, easily computed
approximation to the actual boundary cleavage event.
Using this approach, Chen et al. (1990) showed that
introduction of boron at the (2 1 0) or (3 1 0) boundaries
((1 0 0)-tilt GB series) increased both the maximum stress
and the total work required for cleavage. The effect was
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Figure 2. Time sequence of snapshots from molecular-dynamics simulation of the (100)-tilt, (210) grain boundary of Ni;Al
at T=300 K. Clamped regions at the top and bottom move apart at a constant velocity corresponding to an initial engineering
strain rate of 5x 10'°s~! at time #=0. Two simulation periods are shown. The successive images are at strains of 20, 40, 60,

and 80%

Figure 3. Time sequence of snapshots from molecular-dynamics simulation. Conditions are exactly as as Figure 2, except that
the grain boundary has been modified by the addition of interstitial boron and substitutional nickel

especially pronounced when some of the Al atoms at
the GB were replaced with Ni atoms, to approximate
the co-segregation effect discussed above.

The third approach is the use of molecular dynamics
(MD) to examine the dynamical behavior of the loaded
boundary as it cleaves. This method, while more
computationally intensive, has the advantage that it does
correspond to a real physical event, although
experimentally it may be impossible to observe it
directly. A simulation of the cleavage of the (2 10) GB
of Ni;Al with and without boron is presented here as
an example. The simulation block consists of about 400
atoms, with periodic boundary conditions in the two
Cartesian directions parallel to the GB plane. In the
direction normal to the GB, the strain is increased to
cause cleavage. This is accomplished by specifying a
fixed velocity for the outermost layers of atoms,
corresponding to a desired strain rate. These velocities
are not updated during the simulation, so the system
acts as if it is attached to clamps moving apart at a
constant velocity. Before the strain is applied, the system

is ‘warmed up’ to =300 K, using a thermostat. After
the clamps begin moving, the few layers of atoms near
the clamps are still controlled by a thermostat, while
the atoms around the GB evolve according to
unperturbed classical equations of motion.

The strain rate in the simulations presented here is
5% 10s~1, Although this is many orders of magnitude
faster than macroscopic strain rates in controlled
fracture experiments, it may not be an unreasonable
value for the local strain rate experienced in the region
of the GB as the local stress achieves the critical value
necessary to begin cleavage. This hypothesis can be
tested by replacing the constant-strain-rate boundary
conditions with constant-stress boundary conditions.

Figure 2 shows snapshots from a simulation on an
undoped GB, while Figure 3 shows the same GB
enriched with interstitial boron and some substitutional
Ni atoms (consistent with the co-segregation effect
discussed in Section 5.2). The qualitative difference
in behavior is obvious. While the boron-free GB
cleaves along the boundary plane, the boron- and
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Figure 4. Local stress vs. local strain for the Ni,Al molecular-
dynamics simulations shown in Figures 2 and 3. The open
circles represent the pure Ni,Al case, while the full circles are
for the boron-doped case

nickel-enriched GB cleaves in the bulk, leaving the GB
intact. Figure 4 shows the tensile stress as a function
of time for the two cases. Consistent with the qualitative
behavior, the maximum stress for the enriched boundary
is ~22 GPa, while the clean boundary fails at a lower
value of ~19 GPa. Moreover, integrating the curves
indicates that 44% more work is required to cleave the
enriched boundary. It is interesting to note that the
maximum stress values for these two boundaries are very
similar (within 1 or 2 GPa) to those obtained using the
simpler stepwise relaxation method.

Because these simulations were performed on fairly
small systems, the quantitative accuracy of the results
is questionable. For example, the cleavage path in Figure
3 runs very close to the thermostat region adjacent to
the lower clamp. A systematic study of the dependence
on system size (in all three directions) and strain rate
would be very useful. However, the qualitative
conclusion seems clear: for this EAM model of Ni;Al,
a GB with segregated B and Ni has a substantially
increased resistance to cleavage.

6. Applicability of EAM to Other Intermetallics
In addition to studies of the L1, (cP4) structure Ni,Al

(e.g. see Yoo et al., 1989; Parthasarathy et al., 1991;
Lin and Chen, 1990; Pestman et al., 1990; Vitek ef al.,

1990; Najafabadi et al., 1991; Mills et al., 1991; Foiles
et al. 1991; Vitek, 1992) and B2 (cP2) NiAl (e.g. see
Clapp et al., 1989; Pasianot and Farkas, 1990;
Moncevicz et al., 1991; Rao et al., 1991) the embedded-
atom method has been applied to a few other
intermetallic systems, such as L1, (cP4) Cu;Au (e.g.
see Foiles, 1987; Ackland and Vitek, 1989; Pestman et
al., 1991; Wallace and Ackland, 1992), L1, (tP4) TiAl
(Rao et al., 1991), CuTi (Shoemaker et al., 1990;
Sabochick and Lam, 1990, 1991), B2(cP2) NiTi (Lutton
et al., 1991), B2 (cP2) FeTi (Lutton ef al., 1991), and
CuNi superlattices (Dodson, 1988; Mintmire, 1990).

EAM should also work well for many other
intermetallics (Redfield and Zangwill, 1989), particularly
those with the relatively simple structures. Intermetallics
with large, complex unit cells probably require a
potential with a more sophisticated many-body term that
can achieve a longer effective range. This assumption
has not yet been thoroughly tested, however, and EAM
may prove more powerful than expected in this regard.
For advanced intermetallic compounds involving
strongly covalent elements, such as MoSi,, EAM is
almost certainly inadequate, as it cannot describe
directional bonding. For these systems, and for the
metal-metal intermetallics with complicated structures,
new potential forms will be required.

7. Conclusions

In the last decade, the embedded-atom method has
grown from its effective-medium-theory origins to
become the interatomic potential of choice for the study
of metals and intermetallics. Compared to the previous
generation of pair potentials, EAM offers improvements
in both accuracy and the capacity for physical
interpretation. As a consequence, more researchers than
ever perform simulations with the expectation that they
will obtain meaningful results. This, in turn, has fostered
a broader awareness of the power of atomistic
simulations in materials-science problems.

While EAM is capable of describing covalent
impurities in low concentration (as shown for the Ni-
Al-B system), its spherically symmetric nature is not
appropriate for strongly covalent systems. Because
many of the advanced intermetallics fall into this
category, the next decade should see significant advances
in more advanced potential forms. In addition, first-
principles methods will continue to evolve, with the
long-term promise of yielding highly accurate results for
arbitrary systems. Nonetheless, there will still be a place
for the computationally fast, n-scaling EAM approach,
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because even the fastest of the more advanced potentials
will probably be 10 to 100 times slower. For this reason,
EAM development will continue, leading to potentials
that achieve higher accuracy and describe a broader
range of intermetallic alloys.
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