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1. Introduction

Computer-driven atomistic simulation methods, such as molecular dynamics (MD)

and Monte Carlo (MC), are playing an increasingly important role in materials science.
Because the properties predicted by an atomistic simulation are only as good as the quality

of the underlying interatomic potential, the development of accurate potentials is of con-
siderable interest. The embedded atom method (EAM), proposed by Daw and Baskes[1],
has revolutionized atomistic simulations for metallic systems due to its enhanced accuracy
and capability for describing low density defects such as free surfaces. The EAM has been
used with good e�ect in a large variety of studies, reviewed elsewhere[2,3]. The purpose
of this report is to present parameters for EAM potentials developed at the Los Alamos
National Laboratory for the seven fcc metals Ni, Pd, Pt, Cu, Ag, Au, and Al.

Although EAM is based on the physics embodied in density functional theory[4-6],
it is important to realize that EAM is a semiempirical approach. This is both a strength
and a weakness. If highly accurate, �rst principles results are desired, one can employ
a quantum chemical or density functional method. However, these approaches are much
more expensive, with computational work scaling as N3 or worse, where N is the number
of atoms. The virtue of the EAM is that it scales as N, requiring only 2-5 times the
work of a pair potential model, yet includes some many-body e�ects that are important
for the description of metallic systems. Although the development of more complex, more
accurate potentials is an active area of research, there will always be a need for fast,
N-scaling potentials such as the EAM form.

The EAM Form

In any N-scaling energy expression, the total energy (Etot) of a system of N atoms
can be written as a sum over atom energies,

Etot =

NX

i

Ei : (1)

In the embedded atom method, Ei is given by

Ei =
1

2

X

j

�(rij) + F (�i); (2)

with
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�i =
X

j

�(rij): (3)

Here rij is the scalar distance between atom i and atom j, � is the pairwise interaction
between atoms, � is another pairwise interaction leading to the \density" term �i, and
F (�) is the \embedding function." The sums over neighboring atoms (j) are limited by

the range of the cuto� for � and �, which is generally one to four neighbor shells in the
perfect crystal.

The computational procedure for evaluating the EAM energy is similar to that for a
pair potential. For atom i, both �(rij) and �(rij) are summed over neighbors j, and then

a single evaluation of F (�i) is performed. Evaluation of the energy derivatives necessary
for MD is only slightly more complicated. As with a pair potential, it is the radial cuto�

of �(r) and �(r) that causes the total computational work to scale as N .
The physical interpretation of EAM is discussed in detail elsewhere[3,7], but some

observations are made here about the general form. It is reasonable to think of �i as a
measure of the atomic density in the neighborhood of atom i, which, in turn, requires that
�(rij) be a monotonically decreasing function of rij . In this sense, EAM can be thought
of as a generalization of the �xed-volume pair potentials[8], in which the \volume" is now
de�ned for each atom rather than the whole system. This allows treatment of defects for
which the volume is ill de�ned, such as free surfaces.

The key to EAM is the nonlinearity of the function F (�). If F were purely linear,
the two terms in Eq. (2) could be collapsed to give a simple pair potential. A nonlinear
F (�) thus provides a many-body contribution to the energy. Because �i depends only on
scalar distances to neighboring atoms, the many-body term has no angular dependence.
Nonetheless, this spherically symmetric, many-body interaction is quite important. For
example, with a simple pair potential, the vacancy formation energy is formally equivalent
to the atomic cohesive energy, and the Cauchy pressure (C12�C44) is zero. Both of these
conditions are nonphysical for transition metals, and are remedied in the EAM expression.

Functional Forms and Fitting Procedure

The approach used by most groups, and the one employed here, is to seek the best

possible �t to experimental data, relying on the physical underpinnings of Eq. (2) to
give a potential that is reasonable in other parts of con�guration space. This empirical
approach, while perhaps less satisfying than attempting to derive functional shapes from
�rst principles, has worked quite well and has contributed to the widespread use of EAM

for metal and alloy simulations. The particular procedure we follow is exactly the one
reported for Ni and Al by Voter and Chen[9], although we report it in slightly more detail
here. The Ag potential also has been reported previously[10].

The pairwise interaction is taken to be a Morse potential,

�(r) = DM [1� e�M (r�RM )]2 �DM ; (14)

where the three parameters, DM , RM , and �M de�ne the depth, position of the minimum,
and a measure of the curvature at the minimum, respectively. The density function is

taken as the density of a hydrogenic 4s orbital
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�(r) = r6[e��r + 29e�2�r]; (15)

where � is an adjustable parameter. Because r6e��r turns over at short r, the second term
has been added to maintain the monotonically decreasing character of �(r) to shorter r
(r values inside the maximum are forbidden in the simulations). This 4s orbital density,

appropriate for Ni and Cu, also worked well for Al and the 5s and 6s transition metals.
Allowing the exponent of r to vary resulted in only small deviations from 6.0, so r6 was

employed for simplicity.
To ensure that the interatomic potential and its �rst derivatives are continuous, both

�(r) and �(r) are smoothly cut o� at r = rcut by using

hsmooth(r) = h(r)� h(rcut) + (
rcut

m
)
�
1� (

r

rcut
)m
�
(
dh

dr
)r=rcut ; (16)

where h(r) = �(r) or �(r) and m = 20. rcut is used as a �tting parameter. Following
Foiles[11], F (�) is de�ned by requiring that the energy of the fcc crystal versus lattice
constant is given by the universal energy form of Rose et al[12],

EU (a
�) = �Ecoh f(a�); (17)

where

f(a�) = (1 + a�)e�a
�

: (18)

Here Ecoh is the crystal cohesive energy (per atom) and a� is a reduced lattice constant
de�ned by

a� = (a=a0 � 1)=(Ecoh=9B
)
1

2 ; (19)

where a is the lattice constant, a0 is the equilibrium lattice constant, B is the bulk modulus,
and 
 is the equilibrium atomic volume. Thus, knowing Ecoh, a0, and B, the embedding
function is de�ned by requiring that the crystal energy from Eq. (2) matches EU from Eq.
(17) for all values of a�. The crystal energy needs to be zero when the crystal nearest-
neighbor distance reaches rcut (i.e., when a� = a�cut). This is accomplished by modifying
the universal function in a manner suggested by Foiles[13],

fmod(a
�) =

f [(1� �)
1

2 a�]� �

1� �
; (20)

where � = f [a�cut]. To make EU go to zero at exactly a�cut requires shifting � slightly.

De�ning q by

� = f(q); (21)

we can solve iteratively for q using

qn+1 =
1

2

�
qn + [1� fmod(qn)]

1

2 a�cut
�
; (22)
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with q1 = a�cut as a starting guess.
Having de�ned the functional forms, we now describe the �tting procedure. The �ve

parameters de�ning �(r) and �(r) (DM , RM , �M , �, and rcut) are optimized by minimizing
the root-mean-square (�rms) deviation between the calculated and reference properties of

the material. Because F (�) is rede�ned for each choice of the parameters, the potential
always gives perfect agreement with the experimental values of a0, Ecoh and B. The

reference properties are the three cubic elastic constants (C11,C12 and C44), the unrelaxed
vacancy formation energy (Ef

vac), and the bond length (Re) and bond strength (De) of

the diatomic molecule. In addition, the hcp and bcc crystal structures are required to be

less stable than fcc. Because the function being minimized contains discontinuities (such
as when the wrong crystal structure becomes more stable) and many local minima, the
parameter space is searched using the very robust (albeit slow) simplex algorithm [14]. For
each metal, multiple simplex searches were initiated with di�ering starting guesses for the

parameters. As with any study of this type, no guarantee can be made that the lowest
minimum found is the global minimum. The results for the seven fcc metals are shown in
Table 1, and the resulting parameter sets are shown in Table 2. The quality of the �t is
seen to best for Ni and Ag (�rms < 1%). Even the worst �ts, for Pt and Au (�rms � 4%),
give quite acceptable agreement with the experimental input.

Discussion and Comments

Relaxing the bulk vacancy structure lowers the predicted vacancy formation energy by
� 0.05 eV, leaving it in the range of the experimental uncertainty. Al exhibits the greatest
relaxation (0.10 eV). The experimental value chosen for Al (0.75 eV) is at the high end
of the experimental range, so that the relaxed value is in good agreement with the best
estimates.

Although it is outside the desired scope of this report to present applications of these
potentials, we note that these fcc EAM potentials have been applied to surface di�usion of
adatom clusters and vacancy clusters on Ag(100)[10], surface energies and adatom surface
di�usion barriers[15], Pt dimer and trimer di�usion on Pt(100)[16], and surface reconstruc-

tions[17]. In addition, various studies of grain boundaries[3,18,19] and surfaces[20,21] in
Ni-Al and Ni-Al-B alloys have been performed using potentials �t in the same way[9].

In general, for these potentials, surface energies tend to be too low[15] (this is a general
characteristic of EAM potentials), surface di�usion barriers are within 0.3 eV or so (<0.1

eV for Ni)[15], although some trends are predicted to much better accuracy[15,16]. Pre-
dicted surface layer relaxations are reasonable and sometimes quantitatively accurate[20].
The fcc(110) 1x2 missing row surface reconstruction is predicted to occur only for Au

and Pt, in agreement with experiment[17]. The predicted melting points are found to be
quite good or somewhat low (most notably for Al and Ni, which are roughly 300K too
low)[22], and the thermal expansion coeÆcients are quite reasonable except for Al (� 2�
too high)[22]. The interstitial structure is predicted to be a (100) dumbbell, in agreement

with experiment.
These potentials, stored in numerical form as interpolation arrays, are available from

the author upon request.
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TABLE 1. Metal properties used in �t. Where two numbers are given, the top is
the calculated result and the bottom is the experimental value. Diatomic bond lengths

in parentheses are interpolated from other species. Lattice constants are from Ref. 23,
cohesive energies are from Ref. 24, elastic constants are from Ref. 25, vacancy energies

are from Ref. 27 [except for Ni (Ref. 29), Pd (Ref. 28), and Al (Ref 31)]. The diatomic
molecule data is from Ref. 26, except for Ni (Ref. 30) and Pt (Ref. xxx).

Ni Pd Pt Cu Ag Au Al

a0 (�A) 3.52 3.89 3.92 3.615 4.09 4.08 4.05

Ecoh (eV) 4.45 3.91 5.77 3.54 2.85 3.93 3.36

B (1012 erg cm�3) 1.81 1.95 2.83 1.42 1.04 1.67 0.79

C11 (10
12 erg cm�3) 2.44 2.35 3.21 1.79 1.24 1.88 1.08

2.47 2.34 3.47 1.76 1.24 1.86 1.14

C12 (10
12 erg cm�3) 1.49 1.76 2.64 1.23 0.93 1.56 0.65

1.47 1.76 2.51 1.25 0.934 1.57 0.619

C44 (10
12 erg cm�3) 1.26 0.72 0.78 0.81 0.46 0.42 0.32

1.25 0.712 0.77 0.818 0.461 0.420 0.316

�Ef1v (eV) 1.60 1.51 1.49 1.30 1.10 0.90 0.73

1.6 1.54 1.5 1.3 1.1 0.9 0.75

De (eV) 1.94 0.70 3.15 2.07 1.66 2.29 1.54

1.95 0.7 3.17 2.05 1.66 2.3 1.60

Re (�A) 2.23 2.52 2.34 2.23 2.50 2.40 2.45

2.2 (2.4) 2.45 2.2 (2.5) 2.47 2.47

� (rms%) 0.75 1.87 3.68 1.22 0.15 1.26 3.85
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TABLE 2. Optimized potential parameters.

Ni Pd Pt Cu Ag Au Al

DM (eV) 1.5335 1.6574 0.76551 0.7366 0.6721 0.6748 3.7760

RM (�A) 2.2053 2.3520 2.5446 2.3250 2.5700 2.5686 2.1176

�M (�A�1) 1.7728 1.5450 2.0035 1.9190 1.8260 1.8964 1.4859

�M (�A�1) 3.6408 3.3470 3.84120 4.0430 3.9060 3.6967 3.3232

rcut (�A) 4.7895 5.4120 5.5758 4.9610 5.5420 5.5155 5.5550
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